FLUE-CURED TOBACCO DISEASE MANAGEMENT

Yuan Zeng, Extension Plant Pathologist, Tobacco

Good disease management in flue-cured tobacco results from accurate diagnosis of disease problems, careful consideration of disease severity in each field, and prudent use of management practices. *Consistent disease control depends on the use of several control practices together. Crop rotation, early root and stalk destruction, and resistant varieties should always be used with disease-control chemicals.*

ACCURATE DIAGNOSES OF DISEASE PROBLEMS is the first step in controlling flue-cured tobacco diseases. Note any signs of disease during the growing season. Plant and soil samples can be taken and analyzed to identify the cause of the problem. Don't forget to record what the problem was determined to be, where and when it occurred, and how bad it eventually became so that you can plan appropriate management practices for the future.

DISEASE-RESISTANT VARIETIES for black shank, Granville wilt, mosaic, as well as cyst and root-knot nematodes, are available to flue-cured tobacco growers in Virginia.

CROP ROTATION is particularly effective in helping to control black shank, Granville wilt, most nematodes, and tobacco mosaic. Crop rotation also provides many agronomic benefits. Length of rotation (*i.e.*, the longer the better) and types of alternate crops are among the most important rotation considerations. Table 1 lists some possible rotation crops.

EARLY DESTRUCTION OF ROOTS AND STALKS reduces overwintering populations of nematodes and disease-causing microorganisms by destroying the tobacco debris that pathogens and pests rely on for food and shelter during the fall and winter. *The earlier and more complete the destruction of tobacco debris, the better the disease control.* Early root and stalk destruction aims to pull the roots out of the ground, dry them out, break them up, and rot them away as soon as possible. Table 2 lists the steps involved.

DISEASE CONTROL IN TOBACCO GREENHOUSES

Avoid seeding tobacco greenhouses any earlier than necessary. Eliminate any volunteer tobacco plants. Plants closely related to tobacco (tomatoes, peppers, etc.) should not be grown in greenhouses used for transplant production.

Disease-causing microorganisms can enter a greenhouse in soil or plant debris, so entrances should be covered with asphalt, concrete, gravel, or rock dust. Footwear should be cleaned or disinfected before entering a

greenhouse. Float bays should be re-lined with fresh plastic each year and be free of soil and plant debris.

			Nem	atodes	Tobacco	
Rotation	Black	Granville	-		Mosaic	Black
Crop	Shank	Wilt	Root-	Tobacco	Virus	Root Rot
			Knot	Cyst		
Fescue	Н	Η	Η	Н	Н	Η
Small	Н	Η	Η	Н	Н	Η
grain						
Lespedeza	Н	Н	Η	-	Н	L
'Rowan'						
Soybean	Н	Н	L^3	Н	Н	L
Corn	Н	М	L	Н	Н	Н
Sweet	Н	М	L^4	-	Н	Н
potato						
Cotton	Н	М	Ν	-	Н	L
Milo	Н	М	L	Н	Н	Н
Peanuts	Н	L	Ν	Н	Н	L
Pepper	Н	Ν	N^2	L	Ν	Н
Potato,	-	Ν	L	L	Н	Н
Irish						
Tomato	-	Ν	N^3	Ν	Ν	М

 Table 1. Usefulness of various rotation crops for tobacco disease control¹.

¹ Adapted from Flue-Cured Tobacco Information, North Carolina Cooperative Extension Service. Ratings indicate the value of each rotation crop for reducing damage caused by each disease in the subsequent tobacco crop, and assume excellent weed control in each rotation crop; H = highly valuable, M = moderately valuable, L = Little value, N = no value – may be worse than continuous tobacco, - = unknown.

² May be highly valuable for some species or races of root-knot nematodes

³ However, root-knot resistant cultivars can be highly effective rotation crops for tobacco.

⁴ Root-knot resistant sweet potato cultivars are moderately effective rotation crops for tobacco.

Table 2. Steps in early stalk and root destruction.

- 1. Cut stalks into small pieces with a bush-hog or similar equipment *immediately after the final harvest*.
- 2. Plow or disc-out stubble the same day that stalks are cut, pulling roots completely out of the soil.
- 3. Re-disc the field 2 weeks after the first operation.
- 4. Plant a cover crop when root systems are completely dried out and dead.

If tobacco mosaic (TMV) may have occurred in the previous year, greenhouse surfaces such as side-curtains, center walkways, and the 2×6 boards that support the float bays should be disinfected. A 10% solution of household bleach in water is sufficient for these purposes, as are most disinfectants. There is no need to spray the purline supports or the plastic covers over the greenhouse. Float trays used when TMV may have been present should be washed and cleaned thoroughly before being steamed or treated. Mosaic has a number of weed hosts (horsenettle, ground cherry) which should all be removed from the vicinity of tobacco greenhouses.

Float trays should be cleaned and disinfected to minimize diseases that reduce seed emergence and kill or damage seedlings (*Rhizoctonia* and *Pythium*). As methyl bromide is no longer available, trays can be treated with aerated steam, maintained at 160 F to 175 F for at least 30 minutes, to minimize damping-off and sore shin diseases.

Never use water from streams or ponds in a tobacco greenhouse, as water from these sources may be contaminated. Avoid introducing disinfestants into water intended for plant uptake. Moving water from one bay to another can increase the spread of water-borne pathogens. Filling bays with water long before floating the trays can make Pythium disease problems worse.

Condensation in the greenhouse favors disease. Temporarily lowering the side curtains near dusk and ventilating the greenhouse with horizontal airflow fans will help reduce condensation. Minimize overhead watering and potential splashing of media from one tray cell to another. Correcting drainage problems in and around the greenhouse will also help avoid excess humidity.

To avoid spreading TMV, mower blades and decks should be sanitized with a 1:1 bleach:water solution between greenhouses and after each clipping. Plant debris left on trays after clipping is one of the primary causes of collar rot problems. High vacuum mowers should be used to clip tobacco

seedlings. Clippings, unused plants, and used media should be dumped at least 100 yards from the greenhouse.

Bacterial soft rot causes a slimy, watery rot of leaves and stems and can easily be misdiagnosed as collar rot. Greenhouse management practices for collar rot, as well as angular leaf spot and wildfire (*i.e.*, two other bacterial diseases), can help reduce bacterial soft rot as a side-effect.

SPECIFIC DISEASES IMPORTANT IN VIRGINIA

Diseases like **black shank, Granville wilt, and Fusarium wilt** are caused by microorganisms that live in the soil. Any activity that moves soil from one place to another can spread these diseases. *Crop rotation, early root and stalk destruction, and a resistant variety should all be used before considering the use of a pesticide to control black shank, Granville wilt, or Fusarium wilt..*

50

Disease Control

Table 3. Diseases of tobacco seedlings

.

Disease	Material	Rate
Pythium Root Rot	Terramaster 4EC	Preventative:
(Pythium spp.)		1.0 fl oz/100 gal may be
		applied twice, as long as
		applications are 3 weeks
		apart. 1.0 fl oz/100 gal
		may be used as a third
		application as long as it
		is made no later than
		eight weeks after
		seeding.
		Curative: 1.4 fl oz/100
		gal

Remarks: Can be used before or after symptoms appear, but no earlier than 2 weeks after seeding. If symptoms reappear, a second application can be made no later than 8 weeks after seeding. No more than 2.8 fl.oz./100 gallons of water may be applied to any crop of transplants, regardless of the number of applications. **MUST BE EVENLY DISTRIBUTED**. When mixing, *first form dilute emulsion*, then distribute diluted emulsion evenly and thoroughly in float bed water. FRAC Code 14.

Target Spot	Penncozeb 75DF	0.5 lb/100 gal (1 level
(Thanatephorus		tsp/gal)
cucumeris); Blue Mold		
(Peronospora		
tabacina); Anthracnose		
(Colletotrichum		
gloeosporioides)		
Remarks: Apply as a fine	foliar spray to the point of	f run-off to ensure thorough
coverage. Begin application	ons before disease has been	observed, but not before
seedlings are the size of a	dime. Use 3 gal of spray m	ixture /1000 sq. ft. when
plants are about the size of	f a dime. Use 6 gal /1000 s	q. ft. when the canopy has
closed and plants are close	e to ready for transplanting.	Repeat applications on a 5-
day interval to protect new	growth. Some tobacco con	mpanies may prohibit the use
of mancozeb products like	Penncozeb in 2020. FRAC	C Code M3.
Target Spot	Quadris	0.14 fl oz (4 ml)/1,000
(Thanatephorus		sq.ft.
_cucumeris)		(6.0 fl oz/A)
Remarks: Apply in enoug	gh water for thorough cover	rage (3-5 gal/1,000 sq. ft.).
The Special Local Need (2	24[c]) label allows only 1 a	pplication before transplanting
and requires the label to be	e in the possession of the u	ser at the time of application.
Follow-up sprays are allow	ved in the field according t	o the Quadris federal label.
FRAC Code 11		
Blue mold	Aliette	0.5 lb/50 gal
(Peronospora tabacina)		8.0 fl oz/A
Remarks: Foliar spray; a	pply no more than 0.6 lb/1	,000 sq.ft; CAN BURN
PLANTS IF WASHED I	NTO MEDIA OR FLOA	T WATER; no more than 2
_sprays/greenhouse season.	FRAC Code 33.	
Angular Leaf Spot or	Agrimycin 17, Fire-	100-200 ppm
Wildfire (Pseudomonas	Wall 17WP, Harbour,	(2-4 tsp/3gal)
syringae p.v. tobacci)	etc.	
Remarks: Foliar Spray-1	00 ppm = 4 oz/50 gal or 0.	5 lb/100 gal for preventative
use. 200 ppm = 0.5 lb/50 g	gal or 1.0 lb/ 100 gal for cu	rative use.

Black shank is caused by a fungus-like pathogen (*Phytophthora nicotianae*) that lives in soil and attacks tobacco roots and stalks. Tables 4, 5, and 10 present black shank resistance ratings for flue-cured tobacco varieties. *Virginia tobacco producers should assume that most of their fields contain race 1 of the black shank pathogen. In addition to planting a variety with high resistance to race 1, growers planting black shank problem fields in 2024 should apply a black shank fungicide at first cultivation and/or at layby in addition to use in the transplant water* (Table 11). Remember that while soil fumigants provide good to excellent control of Granville wilt and nematodes, they are generally not effective for black shank control.

		Relative Y	Tield Index ³
Varieties with the	Percent	With	Without Black
Ph gene ¹	Survival ²	Black Shank	Shank
NC 1226 ⁴	99	106	108
NC 196	73	74	102
PVH 1452	66	67	101
CC 700	67	66	98
PVH 1600	64	64	100
NC 72	57	57	100
CC 67	69	55	92
NC 299	47	47	100
CC 27	39	41	105
NC 297	37	38	103
CC 37	39	37	94
PVH 2310	30	30	100

Table 4. Reactions to race 1 black shank by flue-cured tobacco varieties possessing the Ph_p gene.

¹ Varieties with the Ph_p gene possess very high resistance to race 0 of the black shank pathogen. Resistance to race 0 in varieties without the Ph_p gene is similar to or higher than that to race 1.

² Average % Survival without a soil fungicide from 3 years of field testing by North Carolina State University. Source: 2020 Tobacco Production Guide, Managing Diseases, Table 8.3.

³ Relative Yield Index = yield of each cultivar relative to the yield of all other cultivars in the experiment(s). Yield indexes for "No Black Shank" = average relative yield from the 2015-2020 Virginia OVT tests conducted at the Southern Piedmont AREC, Blackstone. Yield indexes for "Black Shank (race 1)" = yield index without black shank multiplied by 2019-2020 NCSU Black Shank-% Survival ratings.

⁴ Tentative ratings based on the limited data available in December 2020.

Table 5. Reactions to race 1 black shank by flue-cured tobacco varieties that don't possess the Ph_p gene.

		Relative Y	vield Index ³
Varieties without	Percent	With	Without Black
the Ph_p gene ¹	Survival ²	Black Shank	Shank
GL 386 ⁴	94	96	102
CC 35	82	95	116
NC 925	92	92	99
CC 1063	92	89	97
NC 938	87	87	100
CC 145 ⁴	91	82	90
K 346	85	80	93
NC 606	77	74	96
CC 33	71	68	95
GL 395	67	63	94
CC 143	56	58	105
GL 26H	53	57	108
CC 13	57	57	100
PVH 2254	50	50	101
PVH 2110	50	53	107
K 326	37	39	105

¹ Varieties with the Ph_p gene possess very high resistance to race 0 of the black shank pathogen. Resistance to race 0 in varieties without the Ph_p gene is similar to or higher than that to race 1.

² Average % Survival without a soil fungicide from 3 years of field testing by North Carolina State University. Source: 2020 Tobacco Production Guide, Managing Diseases, Table 8.3.

³ Relative Yield Index = yield of each cultivar relative to the yield of all other cultivars in the experiment(s). Yield indexes for "No Black Shank" = average relative yield from the 2015-2020 Virginia OVT tests conducted at the Southern Piedmont AREC, Blackstone. Yield indexes for "Black Shank (race 1)" = yield index without black shank multiplied by 2019-2020 NCSU Black Shank-% Survival ratings.

⁴ Tentative ratings based on the limited data available in December 2020.

Granville (Bacterial) wilt is caused by a soil-inhabiting bacterium (*Ralstonia solanacearum*) that invades tobacco plants through one or more roots and often kills the entire plant. The pathogen can also invade tobacco plants through wounds, so early and shallow cultivation and hand-topping can help reduce spread in infested fields. Although symptoms are somewhat similar to those for black shank, intermediate symptoms of Granville wilt involve wilting on only one side, and wilted leaves may retain their normal green color rather than yellowing. *Crop rotation and use of resistant varieties are ESSENTIAL for Granville wilt control.* Including soybeans as a rotation crop helps reduce losses to this disease (Table 1). Disease reduction and yield increases are generally much larger from use of resistant varieties compared to soil fumigation (Tables 6, 7, 10, and 11). *Wilt*-

resistant varieties reduce infection through roots but not stalks (infections that occur via mechanical toppers and/or tobacco harvesters). See Table 6. Topping and harvesting equipment should be adjusted and sanitized carefully before and after use in fields infested with the Granville wilt pathogen.

 Table 6. Performance of selected flue-cured tobacco varieties in 2023 on-farm test for tolarance to Granville Wilt, South Hill, VA.

		% Dead plan	ts	
Variety	7 Jun	28 Jun	14 Jul	29 Jul
CC 1063	0.5	0.5	0.5	0.9
CC 143	0.6	0.7	0.7	0.7
CC 145	0.2	0.4	0.7	0.9
CC 37	0	0	0	0.2
GL 365	0.2	0.2	0.2	0.4
GL 386	0	0	0	0
GL 395	0	0	0.2	0.4
K 346	0	0	0.2	0.2
NC 1226	0	0	0.4	0.6
NC 196	0	0	0	0
NC 297	0.4	0.4	0.6	1.1
NC 606	0	0	0.2	0.2
NC 960	0	0.2	0.4	1.1
NC 987	0.2	0.2	0.4	0.7
NC 996	0	0	0.4	0.5
PVH 1920	0	0	0	0.2
PVH 1940	0.2	0.4	0.4	0.5
PVH 2343	0.2	0.2	0.2	0.7
	% Plants	exhibiting wilti	ng symptoms ¹	
Variety	7 Jun	28 Jun	14 Jul	29 Jul
CC 1063	0.9	1.1	1.3	13.5
CC 143	0.2	0.6	0.6	9.5
CC 145	0.6	0.6	0.7	8.0
CC 37	0	0.6	0.6	10.5
GL 365	0	0.7	0.9	13.3
GL 386	0	0	0.76	17.2
GL 395	0	0.2	0.2	19.9
K 346	0	0.2	0.5	12.5
NC 1226	0	0.6	1.0	27.6
NC 196	0.4	0.4	0.4	14.6
NC 297	0.2	0.5	0.9	16.6
NC 606	0.2	0.5		
	0.2	0.5	0.4	25.4
NC 960	0.2	0.3 0.4 0.5	0.4 0.5	25.4 20.4
NC 960 NC 987	0.2 0 0 0.2	0.3 0.4 0.5 0.4	0.4 0.5 0.4	25.4 20.4 7.6
NC 960 NC 987 NC 996	0.2 0 0.2 0.2	0.3 0.4 0.5 0.4 0.2	0.4 0.5 0.4 0.4	25.4 20.4 7.6 11.3
NC 960 NC 987 NC 996 PVH 1920	0.2 0 0.2 0.2 0	0.4 0.5 0.4 0.2 0.2	0.4 0.5 0.4 0.4 0.4	25.4 20.4 7.6 11.3 15.9
NC 960 NC 987 NC 996 PVH 1920 PVH 1940	0.2 0 0.2 0.2 0 0.7	0.4 0.5 0.4 0.2 0.2 0.9	0.4 0.5 0.4 0.4 0.5 0.9	25.4 20.4 7.6 11.3 15.9 15.9

¹a plant exhibited 10% to 50% wilting at each disease rating time point was considered as a wilting plant.

able 7. Reactions of h	ue-cureu tobacco	Relative Y	ield Index ³
Varieties with the	%	With	Without
Php gene ¹ :	Survival ²	Disease	Disease
PVH 1452	53	67	101
CC 37	67	63	94
NC 297	55	57	103
CC 27	49	51	105
CC 67	53	49	92
NC 299	46	46	100
NC 196	40	41	102
CC 700	36	35	98
NC 1226 ⁴	12	13	108
Varieties without the	Php gene ¹		
GL 386 ⁴	78	80	102
NC 606	67	65	96
CC 1063	53	52	97
NC 938	51	51	100
CC 143	46	48	105
K 346	85	46	93
GL 26H	42	45	108
GL 395	45	42	94
GF 318	41	42	101
CC 13	42	42	100
NC 925	42	42	99
CC 33	41	39	95
CC 145 ⁴	35	32	90
K 326	24	25	105
CC 35	12	14	116

Table 7. Reactions of flue-cured tobacco varieties to Granville wilt.

¹ Varieties with the *Php* gene possess very high resistance to race 0 of the black shank pathogen. Resistance to race 0 in varieties without the *Php* gene is similar to or higher than that to race 1.

² Average % Survival without a soil fungicide from 3 years of field testing by North Carolina State University. Source: 2020 Tobacco Production Guide, Managing Diseases, Table 8.3.

³ Relative Yield Index = yield of each cultivar relative to the yield of all other cultivars in the experiment(s). Yield indexes for "No Granville Wilt" = average relative yield from the 2015-2020 Virginia OVT tests at the Southern Piedmont AREC, Blackstone. Yield indexes for "with Granville Wilt" = yield index without Granville wilt multiplied by average % Survival.

⁴*Ratings based on limited data available.*

Fusarium wilt is caused by *Fusarium oxysporum* f. sp. *nicotianae*. Recent studies at Virginia Tech's Southern Piedmont AREC showed that other Fusarium species are also associated with the disease. Fusairum wilt can become a serious problem when tobacco plants are stressed by abiotic (e.g., drought, warm) and other biotic factors (e.g., nematode). Infected plants are often wilted on one-side, and leaves or parts of leaves are significantly yellowed or chlorotic. Early destruction of tobacco stalks and roots and crop rotation (for as long as possible, but not with cotton or sweet potato) will also help reduce problems with Fusarium wilt. Soil fumigation using a product containing chloropicrin may be required where significant stand loss has occurred. When a field is known to be infested with Fusarium wilt causal agents, consider to plant varieties that are tolerant to the disease (Table 8).

 Table 8. Performance of selected flue-cured tobacco varieties in 2023 on-farm test for tolerance to Fusarium wilt near Chatham, VA.

	% Dead Plants				
Variety	29 Jun	13 Jul	28 Jul		
CC 1063	1.7	2.5	10.6		
PVH 1920	10.2	33.4	44.5		
PVH 1600	2.2	16.5	15.0		
NC 196	1.7	9.8	17.7		
K 326	2.2	21.4	32.2		
CC 143	1.3	9.8	23.6		
NC 939	2.3	5.8	45.6		
% Plants exhibiting wilting symptoms ¹					
	% Plants exhib	iting wilting symptoms	1		
Variety	% Plants exhib 7 Jun	iting wilting symptoms 28 Jun	ı 14 Jul		
Variety CC 1063	% Plants exhibit 7 Jun 3.8	iting wilting symptoms 28 Jun 27.2	1 <u>14 Jul</u> 89.4		
Variety CC 1063 PVH 1920	% Plants exhibit 7 Jun 3.8 14.1	iting wilting symptoms 28 Jun 27.2 30.4	1 14 Jul 89.4 38.5		
Variety CC 1063 PVH 1920 PVH 1600	% Plants exhib 7 Jun 3.8 14.1 6.1	iting wilting symptoms 28 Jun 27.2 30.4 51.8	14 Jul 89.4 38.5 85.0		
Variety CC 1063 PVH 1920 PVH 1600 NC 196	% Plants exhib 7 Jun 3.8 14.1 6.1 9.2	iting wilting symptoms 28 Jun 27.2 30.4 51.8 50.4	14 Jul 89.4 38.5 85.0 47.0		
Variety CC 1063 PVH 1920 PVH 1600 NC 196 K 326	% Plants exhib 7 Jun 3.8 14.1 6.1 9.2 3.4	iting wilting symptoms 28 Jun 27.2 30.4 51.8 50.4 32.9	14 Jul 89.4 38.5 85.0 47.0 33.2		
Variety CC 1063 PVH 1920 PVH 1600 NC 196 K 326 CC 143	% Plants exhib 7 Jun 3.8 14.1 6.1 9.2 3.4 7.5	iting wilting symptoms 28 Jun 27.2 30.4 51.8 50.4 32.9 43.4	14 Jul 89.4 38.5 85.0 47.0 33.2 76.4		

¹a plant exhibited 10% to 50% wilting at each disease rating time point was considered as a wilting plant.

Tobacco Cyst (TCN), Root-Knot, and Lesion Nematodes are microscopic worms that live in the soil and feed on tobacco roots. *Fields continuously planted with tobacco will develop significant nematode problems.* In addition to stunting tobacco and reducing yield and quality on their own, tobacco nematodes also significantly increase levels of black shank, Fusarium wilt, and Granville wilt. Destruction of tobacco roots as soon as possible after harvest is a critical first step toward reliably acceptable nematode control in the future. Production practices such as early root and stalk destruction, crop rotation, and resistant varieties reduce nematode populations over much longer periods of time than nematicides, and should therefore always be used in addition to nematicides.

Frequent use of varieties with the Ph_p gene over the last 20 years has dramatically reduced TCN populations in many fields. Nematicide use should no longer be necessary for TCN control when resistant varieties have been planted in rotated fields, but may be necessary when the number of TCN juveniles and eggs exceeds 1,000 per 500 cc of soil (Tables 4, 7 and 10). *Planting a variety without the Ph_p gene for 1-2 consecutive years may allow TCN to increase to damaging levels.* Field histories and nematode assay results can be used to decide if nematicide use would be prudent for the 2021 crop.

Except for the new cultivar CC 145, all flue-cured tobacco cultivars currently being grown are resistant to races 1 and 3 of the southern root-knot nematode (Meloidogyne incognita). However, the peanut root-knot nematode (*M. arenaria*), races 2 and 4 of the southern root-knot nematode, and the Javanese root-knot nematode (M. javanica) are also now common in Virginia. The Guava root-knot nematode (*M. enterolobii*) is also currently spreading in a number of nearby states, including North Carolina. Any galling on a "root-knot resistant" flue-cured tobacco cultivar indicates the presence of at least one of these other types of root-knot. Flue-cured tobacco cultivars CC 13, CC 33, CC 35, and CC 37 are resistant to M. arenaria and M. javanica in addition to races 1 and 3 of M. incognita, and should significantly improve control of these species of root-knot nematodes (Table 9). However, no currently-grown tobacco cultivars possess resistance to M. enterolobii. Rotating tobacco with "non-host" crops will also reduce rootknot nematode populations (see Table 1), but forage legumes, such as clover, are often good hosts for root-knot. Sweet potato is a good host for M. enterolobii, so rotating flue-cured tobacco with sweet potato significantly increases the risk of that new nematode gaining a foothold or increasing in Virginia. Rotation intervals should be increased for as long as possible. Virginia growers should also be particularly careful when purchasing farm equipment and sweet potato planting stock from the Carolinas to avoid introducing this new and very damaging nematode into Virginia. Using an effective soil nematicide is advisable when crop rotation and resistant varieties aren't practical and preplant root-knot populations are high (Table 14). At this time, a maximum rate of Telone II is the only recommended nematicide treatment for fields where *M. enterolobii* has been detected.

Risk of Crop Loss	% Roots Galled	Fall Sample	Spring Sample	Control Options
Very Low	1 to 10	1 to 200	1 to 20	Practice crop rotation and/or plant a resistant variety
Low	11 to 25	201 to 1,000	21 to 100	Use crop rotation in combination with a resistant variety and/or a nematicide
Moderate	26 to 50	1,001 to 3,000	101 to 300	Increase rotation interval. Also use a resistant variety and a nematicide rated 'G' or higher
High	Over 50	Over 3,000	Over 300	Increase rotation interval if at all possible. Use a resistant variety with a nematicide rated 'E'

Table 9. Interpreting Root-Knot Nematode infestation levels

Significant crop stunting and relatively high populations of lesion or meadow nematodes (*Pratylenchus* species) seem increasingly common in flue-cured tobacco fields in Virginia. However, not all lesion nematode species damage tobacco, and nematode assay results aren't currently able to differentiate those species from others that don't parasitize tobacco. Rotation crops that reduce root-knot and tobacco cyst nematodes aren't necessarily effective for lesion nematodes, although a single year of forage or grain pearl millet can be highly effective. No resistance to lesion nematodes is available in tobacco varieties. Applying a tobacco nematicide for lesion nematode control may be profitable when: 1- significant stunting or crop weakness has already been observed, and 2- a soil nematode assay detects as few as 50-100 lesion nematodes/500 cc of soil.

Tomato spotted wilt virus (TSWV) is spread by various species of thrips usually within the first few weeks after transplanting. Greenhouse application of an appropriate systemic insecticide can significantly reduce damage caused by TSWV.

Tobacco mosaic virus (TMV) can be spread by contaminated clipping mowers in the greenhouse, from tobacco roots and stalks remaining in soil from previous crops, from weed hosts such as horsenettle and ground cherry, from contaminated objects and surfaces (trays, sheets, etc.), and from manufactured tobacco products. Workers should wash their hands regularly during planting. Rogueing infected plants before layby will reduce virus spread within a field. However, tobacco mosaic can't be eliminated from

infested fields without crop rotation and early destruction of roots and stalks. Mosaic resistant varieties can reduce damage and may help eliminate residual virus in infested fields. *Varieties such as CC 27, CC 37, CC 67, GL 26H, NC 297, PVH 2254, PVH 2275 or PVH 2310 may be appropriate for fields with a history of 30 to 50 percent of the plants infected with mosaic before topping. If a TMV-resistant variety is planted, the entire field should be planted to the resistant variety to avoid significant plant injury.*

Target Spot, Frogeye, and Blue Mold can be significant problems for tobacco producers in Virginia. Quadris is registered for target spot control in both the greenhouse and field (Tables 3 and 11), but only one spray is allowed in the greenhouse. If applied shortly after the 1st clipping, this spray should provide good disease control for at least 3 to 4 weeks. Target spot can also reach damaging levels in the field as topping time nears. Timely harvest of lower leaves often reduces leaf diseases by increasing air flow in fields, allowing upper leaves to dry-out, but in wet weather leaf diseases can continue to get worse through the harvest period. Fungicide sprays can help minimize leaf spots through these conditions, but continued sequential use of

Table 10. Tobacco disease resistance in selected flue-cured tobacco varieties available in 2021.

	Resistance Rating						
					Nematodes		
	Black S	hank ¹		Root-	Knot	-	
	Ph_p						Tobacco
	gene	Race	Granville	М.	Other	Tobacco	Mosaic
Variety	(race 0	1	Wilt ¹	incognita	species ³	Cyst	Virus
•	only) ²			0	1	2	
CC 13		57	42	+	+	-	_
CC 27	+	39	49	+	-	+	+
CC 33	-	71	41	+	+	-	-
CC 35	-	82	12	+	+	-	-
CC 37	+	39	67	+	+	+	+
CC 67	+	60	53	+	-	+	+
CC 143	-	56	46	+	-	-	-
CC 145 ⁴	-	91	35	-	-	-	-
CC 700	+	67	36	+	-	+	-
CC 1063	-	92	53	+	-	-	-
GF 318	+	60	41	+	-	+	-
GL 26H	-	53	42	+	-	-	+
GL 386 ⁴		94	78	+	-	-	-
GL 395	-	67	45	+	-	-	-
K 326	-	37	24	+	-	-	-
K 346	-	85	49	+	-	-	-
NC 196	+	73	40	+	-	+	-
NC 297	+	37	55	+	-	+	+
NC 299	+	47	46	+	-	+	-
NC 606	-	77	67	+	-	-	-
NC 925	-	92	42	+	-	-	-
NC 938	-	87	51	+	-	-	-
NC 1226 ⁴	+	99	12	+	-	+	-
PVH 1452	+	66	53	+	-	+	-
PVH 2310	+	30	37	+	-	+	-

¹ Resistance rating = "% Survival", the average % plants still alive near 2nd or 3rd harvest, without a soil fungicide or fumigant. See Tables 4-7 for more detailed information. ² Varieties with the Ph_p gene are almost immune to race 0 of the black shank pathogen;

resistance to race 0 without the Ph_p gene is at least as high as resistance to race 1.

³ "Other species" include *Meloidogyne arenaria* or *M. javanica*, which are now common in Virginia. All flue-cured tobacco varieties are thought to be susceptible to the guava root-knot nematode (M. enterolobii), but this nematode has not been detected in Virginia.

⁴ Ratings based on limited data available.

similar fungicide chemistries (FRAC groups) can lead to fungicide insensitivity within the target pathogens. Unfortunately, *insensitivity to azoxystrobin (the active ingredient in Quadris) has been detected in tobacco leaf spot pathogens in both Kentucky and North Carolina every year since 2017. Similar fungicide insensitivity in Virginia populations of these pathogens is likely.* Tobacco producers have no similarly effective fungicide alternative to Quadris for target spot and frogeye leaf spot control. Because these pathogens may develop increased insensitivity if Quadris is applied "back-to-back", growers are strongly encouraged to *alternate application of Quadris with other foliar fungicides registered for use on tobacco* in order to slow the spread of Quadris-resistant populations of the target spot and frogeye pathogens. Multiple fungicides are available for blue mold control and are listed in Tables 3, 12 and 13 of this chapter.

APPLICATION METHODS

Pesticide performance and safety is dependent on use of proper application methods. Proper pesticide use depends upon correct diagnosis of the problem, a clear understanding of the pesticide label, proper calibration of application equipment, and strict adherence to label directions and all federal, state and local pesticide laws and regulations.

Preplant Incorporated (Preplant) - Refer to the section under weed control.

Foliar Spray (FS) – Greenhouse applications should not begin until seedlings are at least the size of a dime, but if repeated, should be applied at 5-7 day intervals up to transplanting. Use flat-fan, extended range tips at approximately 40 psi to maximize results. Field sprays targeting the soil surface should be applied using spray tips that evenly distribute the spray solution at spray volumes between 25 and 40 gallons per acre. Field sprays for leaf diseases should generally be applied using tips that apply a fine spray in 20-100 gallons per acre at 40-100 psi to maximize coverage as plants increase in size. The use of drop nozzles should significantly improve disease control after layby by improving spray coverage on bottom leaves, where foliar diseases are usually concentrated.

Fumigation: - Fumigant Management Plans (FMPs) are required for the use of soil fumigants containing chloropicrin or metam sodium. Tobacco producers who plan to fumigate soil need to familiarize themselves with all requirements involved with use of the specific product they plan to use. These requirements are detailed in the extensive labels for all soil fumigants. **Precautionary and Restriction Statements** - Read and follow all directions, cautions, precautions, restrictions, and special precautions on

each product label. Take labels seriously. This publication must not be used as the only source of precautionary and restriction statements.

Table 11. FIELD DISEASES OF TOBACCO: ROOT AND STEM DISEASES

			Di	isease ²
			Black	Granville
Product	Rate/A	Application Method ¹	Shank	wilt
Orondis Gold 200 ³	4.8 fl oz	TPW	Е	
+ Ridomil Gold SL	+ 6-8 fl oz			
Orondis Gold Premix ³	24-28 fl oz	TPW	Е	
Presidio ⁴	4.0 fl oz	1 st cultivation or layby	VG	
Ridomil Gold SL	1 pt + 1 pt	PPI + layby	VG	
Ultra Flourish	2 pt + 2 pt	PPI + layby	VG	
MetaStar 2E AG	4 pt + 4 pt	PPI + layby	VG	
Ridomil Gold SL	4-8 fl oz +	TPW ⁵ + 1 st cultivation	VG	
	1.0 pt	and/or layby		
Ridomil Gold SL	1 pt + 1 pt	1 st cultivation + layby	VG	
Ultra Flourish	2 pt + 2 pt	1 st cultivation + layby	VG	
MetaStar 2E AG	4 pt + 4 pt	1 st cultivation + layby	VG	
Ridomil Gold SL	1 pt + 1 pt	PPI + 1 st cultivation +	VG	
	+ 1 pt	layby		
Ultra Flourish	2 pt + 2 pt	PPI + 1 st cultivation +	VG	
	+ 2 pt	layby		
MetaStar 2E AG	4 pt + 4 pt	PPI + 1 st cultivation +	VG	
	+ 4 pt	layby		
Ridomil Gold SL	1-3 pt	PPI	F	
Ultra Flourish	2-6 pt	PPI	F	
MetaStar 2E AG	4-12 pt	PPI	F	
Telone C-17	10.5 gal	F-Row	P-F ⁵	G
Chlor-O-Pic	3 gal	F-Row	P-F ⁵	G
Chloropicrin 100	3 gal	F-Row	P-F ⁵	G
Pic Plus	4 gal	F-Row	P-F ⁵	G

¹<u>PPI</u> – broadcast, preplant-incorporated spray; <u>TPW</u> – addition of fungicide to water applied to furrow during transplanting; <u>1st cultivation</u> – broadcast spray just *before* 1st cultivation; <u>layby</u> – broadcast spray just *before* layby; <u>F-Row</u> – inject 8 inches deep in row with single shank in center of row. Do not apply more than 3 pt of Ridomil Gold or Orondis Gold B; 6 pt of Ultra Flourish; 12 pt of Meta Star 2E AG; 9.6 fl oz Orondis Gold 200 or 27.8 fl oz Orondis Gold Premix; or 8 fl oz Presidio per acre per season.

²Control rating – F=fair; G=good; VG=very good; E = Excellent. (-) – No disease control or not labeled for this disease.

³Apply in at least 100-200 gallons of transplant water (TPW) per acre, followed by at least 1 subsequent fungicide application for black shank control using a non-FRAC 49 product. There is a risk of temporary plant injury from TPW application at lower rates of water per acre; pre-mixing the soil fungicide in a TPW nurse or source tank helps reduce risk of plant injury. Use higher rate for heavier soils or more susceptible varieties. Do not follow soil use with foliar sprays of any FRAC 49-containing product.

⁴Apply Presidio as a field spray after use of a different fungicide at or near transplanting. Presidio may be applied at 1st cultivation or layby, but not both.

⁵Apply in at least 100-200 gallons of transplant water (TPW) per acre, followed by at least 1 subsequent fungicide application for black shank control using a non-FRAC 4 product. Use higher rates for heavier soils or more susceptible varieties.

⁵Furnigants will not control black shank without use of a soil fungicide, but may further improve control from application(s) of a black shank fungicide.

Table 12. FIELD DISEASES OF TOBACCO: TARGET SPOT, FROGEYE, etc

			Application
Disease	Material	Rate	Method ¹
Target Spot	Quadris	6-12 fl. oz.	Foliar
(Thanatephorus cu	cumeris);		Spray
Frogeye (Cercospe	ora		
nicotianae); Blue 1	mold		
(Peronospora taba	cina).		
Remarks: First ap	plication for blue mold	should be made at first inc	lication of
disease in the area;	for target spot, spray at	or soon after layby. Spray	in sufficient
water volume for c	complete coverage and ca	anopy penetration. Research	ch indicates 8-9
fl. oz/ Quadris/A u	sually provides optimal	target spot control. Don't	spray Quadris
"back-to-back" but	t alternate with another f	ungicide from a different	FRAC group.
Quadris now has a	21-day pre-harvest inte	rval (PHI). These restricti	ons will limit
the maximum num	ber of Quadris sprays to	2-3/field growing season.	May enhance
weather flecking; t	ank-mixing with EC pes	ticides or those containing	g high amounts
of solvents may inc	crease that effect.		
Blue mold	Penncozeb 75 DF	2.0 lb/100 gal water	Foliar
Peronospora			Spray
tabacina);			
Remarks: Begin	sprays when conditions f	avor disease and continue	on a 5-7 day
interval until the th	reat of disease subsides.	Penncozeb shouldn't be	applied within 6
weeks of first harv	est to avoid excessive le	af residues. Some tobacco	companies may
	. 1 . 1 1 C	· · 1 1·1 D 1	

not purchase leaf treated with mancozeb fungicides like Penncozeb. ¹Apply at 40-100 psi in 20 gal of water up to layby and up to 100 gal of water near topping. Higher spray volumes are important in maximizing coverage, which is important in achieving desired disease control. Use hollow-cone nozzles (TX12, etc.) Use of drop nozzles after layby stage should increase coverage on lower leaves where disease starts and is often concentrated.

Table 13. FIELD DISEASES OF TOBACCO: BLUE MOLD

Disease	Material	Rate	Application Method ²		
Blue mold	Revus	8.0 fl.oz/ A^1	Foliar		
(Peronospora			Sprav		
tabacina)			-12		
Remarks: Begin	application before diseas	se develops and continue	on a 7-10		
day interval. Swite	ch a non-FRAC Group 40) fungicide after 2 consec	utive sprays.		
May be tank-mixe	d with an effective blue i	nold fungicide with a dif	ferent mode		
of action. Use suf	ficient sprav volume to p	rovide thorough coverage	. Adding a		
spreading/penetra	ting surfactant (non-ionic) may improve results.	8		
Blue mold	Forum +	7.0 fl oz + 2.0 lb/100	Foliar		
Peronospora	Penncozeb 75 DF	gal water ¹	Sprav		
tabacina)		8	1 5		
Remarks: Begin	spravs when conditions	favor disease and continu	e on a 5-7 dav		
interval until the t	hreat of disease subsides.	Do not exceed 8 fl.oz./A	A of Forum		
per application or	30 fl.oz./A per season. H	enncozeb shouldn't be at	oplied within		
6 weeks of first ha	arvest to avoid excessive	leaf residues. Some tobac	co companies		
may not purchase	leaf treated with mancoz	eb fungicides like Pennco	ozeb.		
Blue mold	Orondis Ultra A +	2.0 - 4.8 fl oz + 2.0 -	Foliar		
Peronospora	Orondis Ultra B	4.8 fl oz/100 gal	Sprav		
tabacina)		water ¹	1 5		
Remarks: Begin	spravs when conditions	favor disease and continu	e on a 7-10		
dav interval until	the threat of disease subs	ides. Do not exceed 19.2	fl.oz./A per		
season. Do not fo	llow soil use of Orondis	with foliar sprays. Make	no more than		
2 sequential applic	cations before rotating to	a different fungicide to a	void fungicide		
resistance.			8		
Blue mold	Ridomil Gold EC	$0.5-1 \text{ pt} + 0.5 \text{ pt}/\text{A}^1$	Preplant +		
Peronospora	Ultra Flourish	$1-2 \text{ pt} + 1 \text{ pt}/\text{A}^1$	Layby		
tabacina)	MetaStar 2E AG	$2-4 pt + 2pt^{1}$	5 5		
Remarks: Strain	s of the blue mold pathog	en are often insensitive to	o mefenoxam.		
but mefenoxam m	ay control sensitive strain	ns early in the season, as	well as		
Pythium damping	-off. Read precautionary	and rotation crop restrict	ions.		
Blue mold	Aliette	2.5-4.0 lb/A ¹	Foliar		
Peronospora					
tabacina)					
Remarks: No mo	ore than 5 sprays allowed	, 3 day pre-harvest interv	al; don't tank-		
mix.	- 1 5	, , <u>,</u> , ,	,		
Blue mold	Actigard 50WP	0.5 oz/20 gal/A	Foliar		
Peronospora	8				
tabacina):Tomato)				
Spotted Wilt					
Virus (TSWV)					
Remarks: Begin	applications when blue r	nold disease threatens and	d plants are at		
least 12 inches tal	1. Up to 3 sprays may be	applied on a 10-day sche	dule. Treated		
plants require 3-5 days to fully respond to each application. TSWV spravs					
beginning within 7 days of transplanting or whenever plants have recovered from					
transplant shock may also be used to follow-up on greenhouse application of					
Actigard for TSW	V control.				
¹ Use higher rates w	hen disease is already pre	esent, for longer application	on intervals, or fo		
more susceptible va	rieties. Mix 20-30 gal/A	of spray solution for spra	ays during the firs		

st several weeks after transplanting; gradually increase spray solution for sprays during the first several weeks after transplanting; gradually increase spray volume to 40 gal/A by layby and 80-100 gal/A on tobacco ready to be topped. ²Foliar spray - apply at 40-100 psi in 20 to 100 gal of water. The amount of water depends on size of plant. Use hollow-cone nozzles (TX12, etc.) Use drop nozzles to

apply fungicide to both the top and bottom leaves. <u>Preplant + layby</u> - first application preplant followed by a second spray just before last cultivation.

Table 14. TOBACCO NEMATICIDES

		Nematodes ¹			
		Root Knot			
Product	Rate/A, Application Method ³	Meloidogyne incognita, arenaria, javanica	M. enterolobii²	Tobacco Cyst	Lesion Nematodes
<u>Fumigants</u>					
Chlor-O-Pic	3-4 gal	E	P-F	G	Е
42% Metam products	25 gal	?	?	G	?
Pic Plus	4.2 gal	E	P-F	G	Е
Telone II	6 gal	E	P-F	F	E
Telone II	9-10 gal	E	G	VG	E
Non-					
Fumigants					
Nimitz ⁴	3-7.0 pt/, PPI	F-G	P-F	F-G	F
Velum Prime	6.5-6.84 fl oz, TPW	F-G	P-F	F-G	F

¹ Control ratings: E=Excellent; VG=Very Good; G=Good; F=Fair; P=Poor; ? = insufficient data available to provide reliable evaluation; (---) =no control or not labeled. Use higher rates for higher nematode populations or for heavier soils.

² Tentative ratings based on North Carolina State University ratings for *M. enterolobii* control.

³ Soil fumigant rates assume injection 8 inches deep through a single shank in each row - 21day waiting period before planting. <u>PPI</u>= before planting, apply broadcast in 40 gal/A, use at least 20 gal/A if applied in an 18-24 inch-wide band; incorporate 4-6 inches deep as soon as possible; TPW= transplant water application.

⁴Nimitz should be applied in a band over the center of preformed beds and incorporated at least 7 days before transplanting. Product label rates are expressed per *treated acre* (not planted acre).

⁵Do not apply more than 13.7 fl oz of Velum Prime (0.446 lbs fluopyram) per acre per year, regardless of formulation or method of application. Pre-harvest interval = 30 days. To limit potential development of pest resistance to fluopyram, the first foliar fungicide spray after use of Velum Prime should involve a product from a FRAC Group other than FRAC 7.

DISEASES OF TOBACCO

There Are No Chemical Controls For the Following Diseases

Disease	Remarks
Botrytis Blight (<i>Botrytis cinerea</i>)	A wet rot is often first observed on stems or leaves. A gray, downy material may be present on the surface of diseased areas. In the greenhouse, reducing surface moisture on leaves and stems by correct watering and improved ventilation, and collecting and removing loose-leaf material from clipping, will help reduce damage. "Greenhouse management practices effective for collar rot and target spot also help reduce incidence and severity of Botrytis blight. Occurrence of this disease is extremely rare in the field, but when observed, was associated with topping plants very late in very wet weather."
Brown Spot (Alternaria alternata)	Can be severe on mature tobacco, especially during periods of high humidity. Avoid leaving mature leaves in the field. Good sucker control also helps reduce disease incidence.
Collar Rot (Sclerotinia sclerotiorum)	Symptoms resemble damping-off. Small groups of plants have brown, wet lesions near the base of stems. Leaf rot may appear to progress from leaf margins or tips toward the stem. White, cottony, mold may be visible. Irregularly shaped, white to black objects (sclerotia) may also be found attached to severely infected plant parts. Infected plants, as well as plants immediately adjacent to diseased areas, should be discarded as soon as possible. Improving ventilation, reducing excess moisture, proper clipping procedures, and controlling target spot may help reduce disease.
Frenching (nonpathogenic causal agent)	This disorder has been associated with toxins produced by a nonpathogenic bacterium, <i>Bacillus cereus</i> , and other nonpathogenic microorganisms. Frenching is more prevalent on wet, poorly aerated soils. This problem can be more severe on neutral or alkaline soils and is sometimes associated with lack of available nitrogen or other minerals. Proper drainage and fertilization can be beneficial. Do not plant in alkaline soils and avoid heavy applications of lime.
Weather Fleck (ozone)	This disorder appears as small brown to tan leaf spots in the plant bed and field. The major cause of this problem is ozone from thunderstorms and/or air pollution. Hot humid days followed by heavy rains increase severity of problem.