

22nd ISTRO International Conference

"Living Roots, Living Soil"

Spatio-temporal dynamics of soil penetration resistance depending on different conservation tillage systems

Danijel Jug, Irena Jug, Boris Đurđević, Edward Wilczewski, Bojana Brozović, Vesna Vukadinović, Monika Marković

September 23 - 27, 2024, Virginia Beach, VA, USA

Presentation structure:

- Something about Conservation Agriculture [CA] ongoing Project
- Site description
- Tillage treatments
- **Tillage methods**
- Penetration resistant measurement results

ATY ABC

• Schematic conclusion

Centralna agrobiotehnička

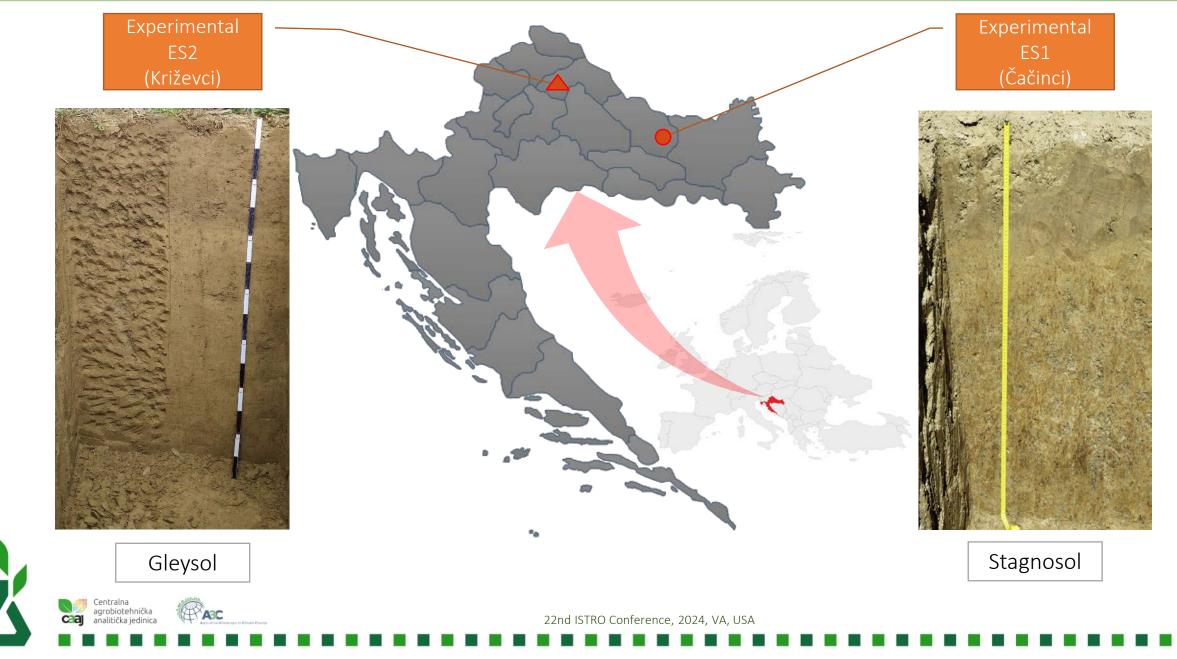
alitička iedinic

• Final remarks

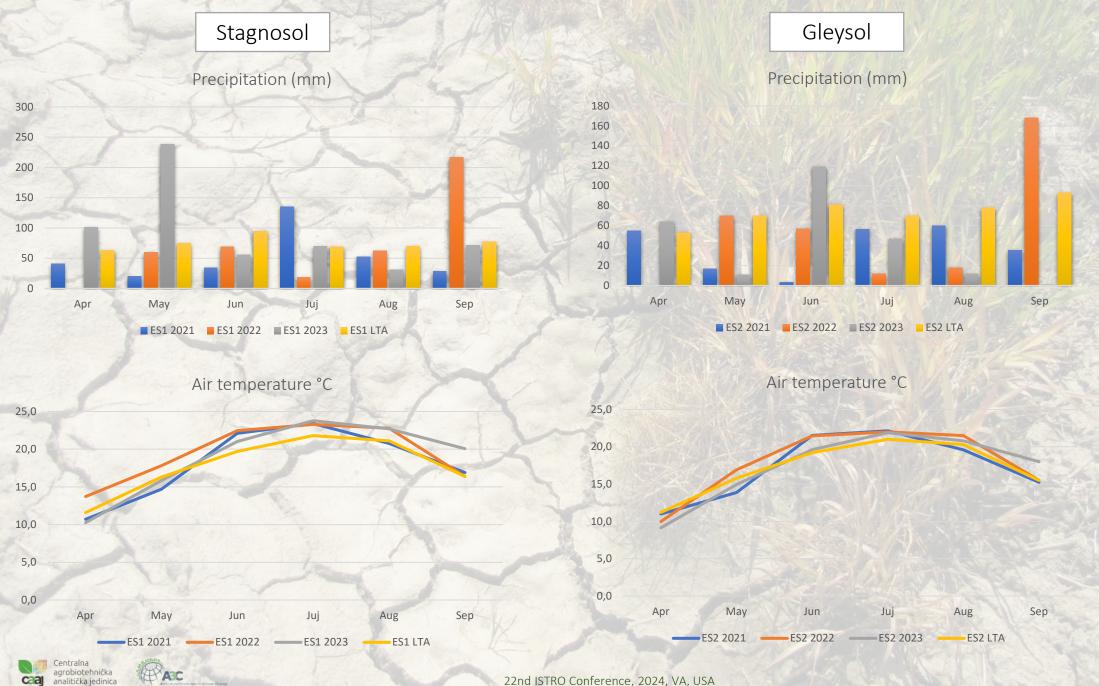
caal

Research Project

Assessment of conservation soil tillage as advanced methods for crop production and prevention of soil degradation


The aim of these Project studies is to determine the level of degradation of selected components of the physical, chemical and biological soil complexes by comparison of conventional and conservation soil tillage systems. Also, defining positive measures and procedures for stopping, preventing and mitigating anthropogenic and natural degradation processes in the soil at different agroecological research sites will be of great pertinence to environmental protection, agricultural producers, scientific and professional community, decision-makers, and will certainly serve as a basis for further scientific research.

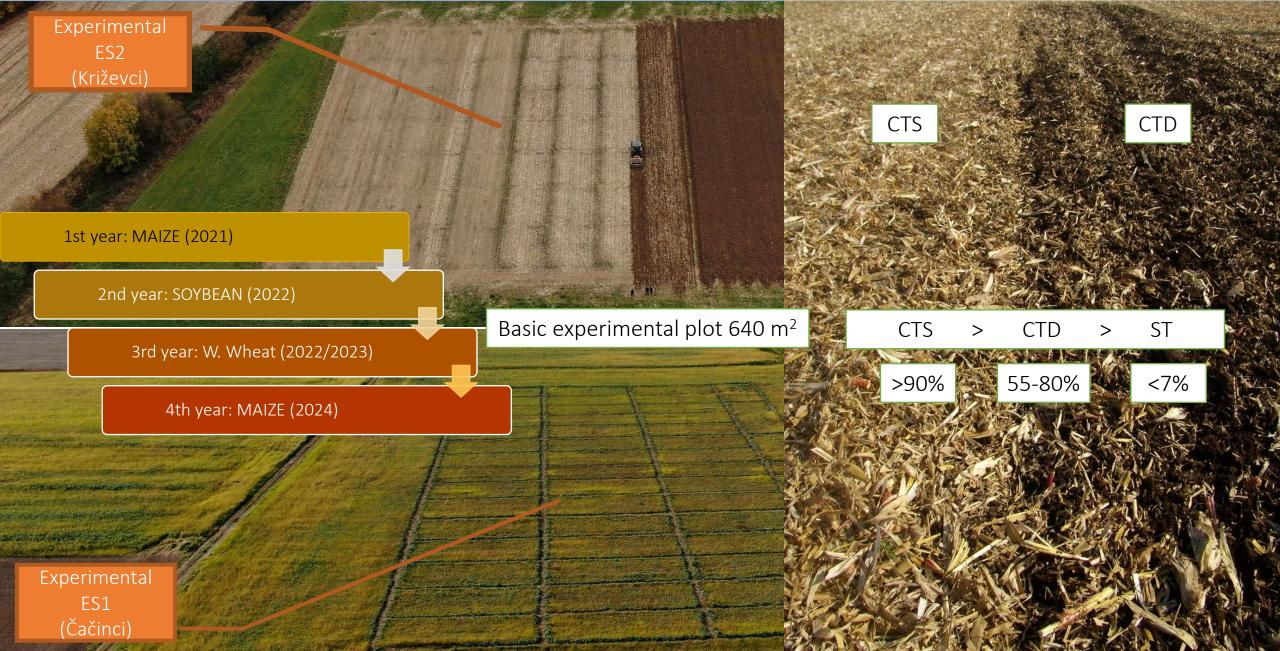
www.fazos.unios.hr



Basic description of the mechanical, physical and chemical properties of the experimental sites

AL T		AS TO CO	
p	A BE	AL	
1	Mar Call	Typin	Fie
N		En april	Par
A	Town	The set	Pack
Y	7 98	and the state	Figur
17 m	Atra -	- AM	ES
Ch a	THE	Contraction of the second	ant.
ELCO.		fait is	
		and the	F
	built in	an and	F
A REFE			EN B
1 2 8	TRO Conference, 2024, VA	USA	Soi
and the second second	A CASE		1 Starter

Parameter	$\mathbf{ES1}^{1}$	ES2					
Location	17°86'36'' E	16°33'32'' E					
	45°61'32'' N	46°01'38'' N					
	111 m a. s. l.	141 m a. s. l.					
Mechanical properties							
Soil type	Stagnosol	Gleysol					
Soil texture	Silty clay loam	Silt					
Soil particles (%) ⁴	Depth ² 0–32 cm:	Depth 0–36 cm:					
	Silt = 60.84	Silt = 82.95					
	Clay = 29.35	Clay = 9.61					
	Sand = 9.81	Sand = 7.44					
	Depth 32–65 cm:	Depth 36–97 cm:					
	Silt = 57.61	Silt = 80.41					
	Clay = 34.08	Clay = 14.08					
	Sand = 8.31	Sand = 5.52					
	Depth 65–200 cm:	Depth 97–175 cm:					
	Silt = 58.92	Silt = 78.96					
	Clay = 30.29	Clay = 14.90					
	Sand = 10.79	Sand = 6.15					
	Physical properties	D/ 10/1					
ield capacity – FC (vol.%)	D1 ³ : 43.04	D4: 42.44					
	D2: 42.58	D5: 37.69					
	D3: 40.13	D6: 36.31					
article density – ρ_b (g cm ⁻³)	D1: 2.65	D4: 2.69					
	D2: 2.74	D5: 2.73					
aking domaity DD (a ama ³)	D3: 2.71	D6: 2.78					
cking density – PD (g cm ⁻³)	D1: 1.76 D2: 1.87	D4: 1.51					
	D2: 1.87 D3: 1.83	D5: 1.73 D6: 1.79					
Total porosity $s(\%)$	D3: 1.85 D1: 43.50	D6. 1.79 D4: 47.21					
Total porosity – ε (%)	D1: 43.50 D2: 42.97	D4: 47.21 D5: 41.39					
	D3: 40.65	D6: 39.91					
	Chemical properties	20. 37.71					
pH(KCl)	D1: 3.92	D4: 5.22					
Pri(ixci)	D1: 3.92 D2: 4.23	D4: 5.22 D5: 5.73					
	D2: 4.23 D3: 4.39	D5: 5.73 D6: 5.68					
pH(H ₂ O)	D3: 4.33 D1: 5.12	D8: 5.65					
pri(120)	D2: 6.16	D5: 7.44					
	D3: 5.92	D6: 7.50					
Hidrolitic acidity – Hy	D1: 7.48	D4: 2.47					
(cmol(+) kg ⁻¹)	D2: 4.07	D5: -					
(D3: 3.15	D6: -					
P2O5 (AL), mg kg-1 soil	D1: 75	D4: 154					
// 8-8-5	D2: 20	D5: 26					
	D3: 18	D6: 32					
K2O (AL), mg kg-1 soil	D1: 111	D4: 75					
· · · · · · · · ·	D2: 107	D5: 52					
	D3: 114	D6: 48					
oil Organic Matter – SOM	D1: 2.83	D4: 1.64					
(%)	D2: 0.83	D5: 0.52					
	D3: 0.48	D6: 0.41					

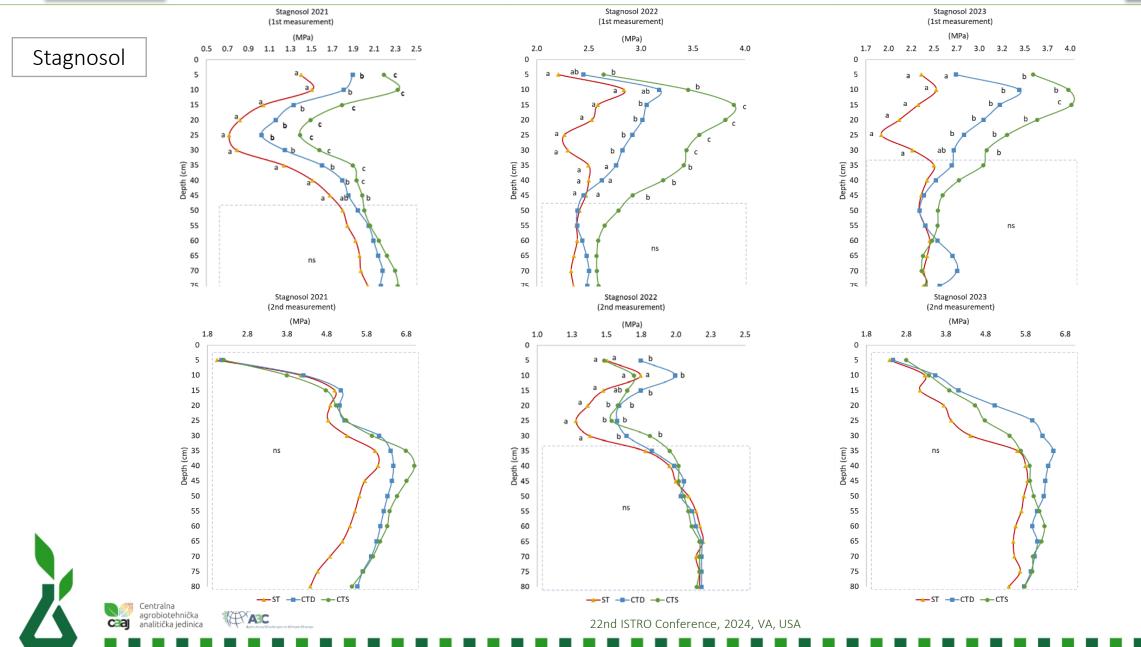


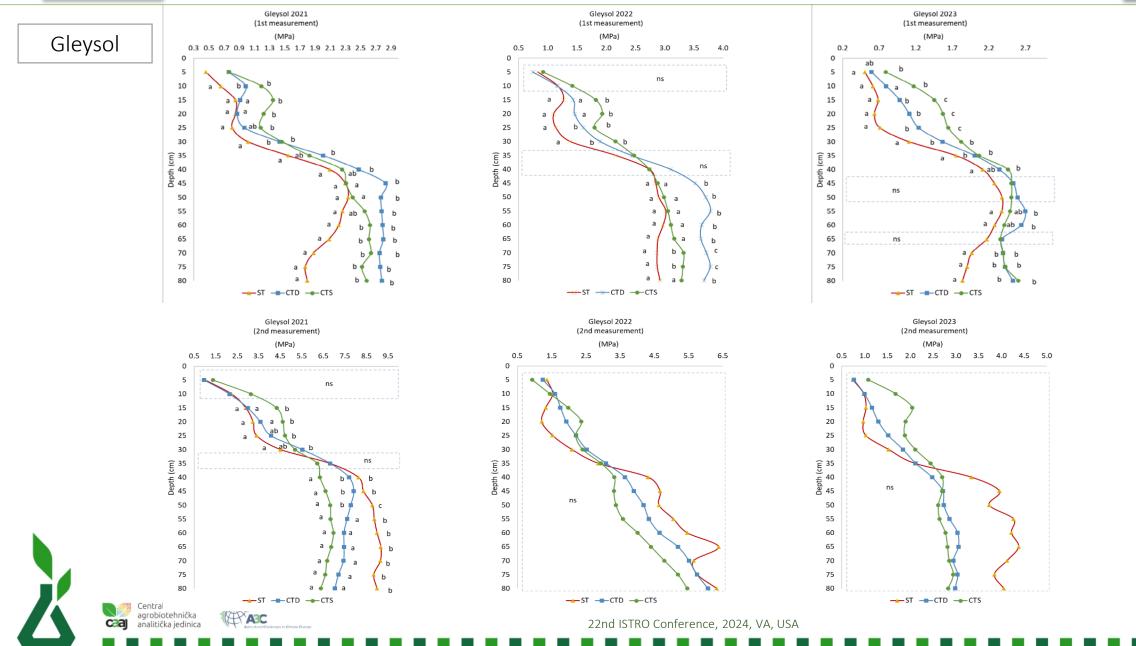
Dates of sowing, harvesting and penetration resistance measurements on both experimental sites

Season	Crop	Site	Sowing date	Harvest date	Penetration resistance measurement	
					GS	Date ²
2020/2021	Maize	$ES1^1$	06/05/212	22/09/21	V3	04/06/21
					R5	23/09/21
		ES2	10/05/21	25/09/21	V3	05/06/21
					R5	25/09/21
2021/2022	Soybean	$ES1^1$	14/04/22	29/09/22	V3	27/05/22
					R8	17/10/22
		ES2	29/04/22	03/10/22	V3	03/06/22
					R8	17/10/22
2022/2023	Winter	$ES1^1$	20/10/22	06/07/23	Feekes 6	10/04/23
	wheat				Feekes 11	10/04/23
		ES2	21/10/22	12/07/23	Feekes 6	01/06/23
					Feekes 11	01/06/23

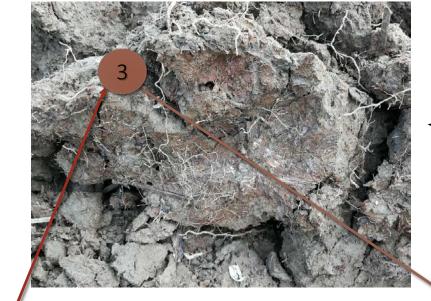
- electronic penetrometer "Eijkelkamp Penetrologger SN"
- cone tip with a base area of 1 cm², and an angle of 60 $^\circ$
- measuring up to 80 cm
- readings on each 1 cm of depth, with mean velocity 1 cm s⁻¹
- GPS-located network

Centralna agrobiotehnička


- each point on the grid was 2 m in diameter
- 8 measurements per each tillage plot


www.fazos.unios.hr

www.fazos.unios.hr



Soil degradation

Plowing

Centralna agrobiotehnička

alitička iedinica

ATY ASC

Final remarks

- Penetration resistance is more strongly influenced by weather conditions than by different tillage systems.
- o Stagnosol soil type is more compact than Gleysol, but only in 1st measurement, while in the 2nd measurement results are reversed.
- In the upper layers (up to 35 cm), PR values were in most cases below the root-limiting critical value (3.5 MPa) at both experimental sites and on both measurement dates.
- By increasing the depth, the PR values at each tillage treatment began to stabilize and smooth out, with similar dynamics on both soil types and measurement dates.
- On Stagnosol, during all investigated years in 1st and 2nd measurements, the highest values of PR values were measured at the CST treatments.
- o On Gleysol, during 1st measurement throughout all three years, the highest PR was measured for CST treatments, while during the 2nd measurement, the highest PR was on ST.

Centralna

HRZZ (Croatian Science Fundation) project: "Assessment of conservation soil tillage as advanced methods for crop production and prevention of soil degradation" ACTIVEsoil: IP-2020-02-2647

• Compared to ST both CST types showed after three years of experiments a significant overall reduction in PR values on both soil types especially on the Gleysol soil type.

- This trend indicates first an increase in PR in ST systems and then a stagnation or decrease in PR in CST treatments.
- The achieved results indicate the potential of replacing ST with CST treatments that ensure better and more efficient rooting of crops and consequently higher yields.
- PR measurement provides valuable results on soil compaction and can be a very useful tool in short-term response.

caa

HRZZ (Croatian Science Fundation) project: "Assessment of conservation soil tillage as advanced methods for crop production and prevention of soil degradation" ACTIVEsoil: IP-2020-02-2647

Thank you for your kind attention!!!

University of Josip Juraj Strossmayer in Osijek Faculty of Agrobiotechnical Sciences Osijek Vladimira Preloga 1, HR-31000 Osijek, Croatia, Department for Crop Production and Biotechnology Chair for Basic Plant Production and Agroclimatology <u>https://www.opb.com.hr</u> Prof. dr. sc. Danijel Jug

<u>e-mail: djug@fazos.hr</u>

This work has been fully supported by Croatian Science Foundation under the project "Assessment of conservation soil tillage as advanced methods for crop production and prevention of soil degradation – ACTIVEsoil" (IP-2020-02-2647)