Vineyard nutrient management in 2004, in light of the 2003 season

- Predictions for 2004
- Strategies for 2004 season
- Observations on 2003 season
 - visual assessments
 - soil and plant tissue testing

NUTRIENTS ESSENTIAL FOR NORMAL GRAPEVINE GROWTH AND DEVELOPMENT

Obtained from air and water	Macro-nutrients	Micro-nutrients
Carbon (C)	Nitrogen (N)	Iron (Fe)
Hydrogen (H)	Phosphorus (P)	Manganese (Mn)
Oxygen (O)	Potassium (K)	Copper (Cu)
	Calcium (Ca)	Zinc (Zn)
	Magnesium (Mg)	Boron (B)
	Sulfur (S)	Molybdenum (Mo)
		Others (?)

Examples of N- and P-deficient plant tissue diagnostic results from bloom, 2003						
Sample	Ν	Р	K	Са	Mg	
1 cab s	0.79	0.08	4.46	1.52	0.47	
2 merl	0.71	0.13	5.03	1.36	0.59	
3 cab s	0.56	0.08	3.86	1.33	0.42	
4 cab s	0.66	0.08	2.69	1.01	0.27	
Normal	1.20 - 2.20	0.14 - 0.30	1.50 - 2.50	1.00 - 3.00	0.30 - 0.50	

"But... Friendly Fertilizer Foundation said that my vines were suffering nutrient stress in 2003 and that that was why I was seeing symptoms such as....."

- Pale green leaves in May
- Poor fruit set (shot berries, no clusters)
- Reddening leaves
- Leaf dropping in mid-summer

Nitrogen considerations

- Increased leaching of nitrates from soil profile during extended rainy weather
- Reduced conversion of nitrates into amino acids and protein during periods of cool, cloudy weather
- Cool, wet soil limiting root function and nitrate uptake
- What is vineyard's historical N status (routine need for fertilizer N, or not?). I.e., 2003 might have been an anomaly

NITROGEN ISSUES

- Assessing need
 - Visual (vine size, leaf color, trellis fill)
 - Tissue analysis (timing, tissue, relationship to standards (total N assessed at bloom-time - sufficiency at <u>1.2 to 2.1% N</u> with this timing)
 - Cane pruning weights (e.g., < 0.2 lbs/ft canopy)
 - Weed or cover crop competition

NITROGEN ISSUES

• Correction

- Materials
 - basis of cost (urea likely least expensive)
 - compost, manure, chicken litter, other organics
 - other nitrate fertilizers (DAP, KNO₃ expensive)

- Timing

- relationship to periods of root growth
- recognition that some of benefit not observed until second year; post-harvest application --foliar or soil
- multiple, small applications rather than single large
- fertigation

NITROGEN ISSUES

- Most efficient source is from soil-derived N.
- Foliar N as a short-term correction
 - urea (various formulations, e.g., Coron [Helena])

PHOSPHORUS

- Little phosphorus is lost to leaching -- 2003 symptoms may be due to restricted root growth or soil pH problems.
- And -- therefore -- might not be a problem in 2004 if 2004 is a "normal" season. Soil test would be good starting point.

PHOSPHORUS

• Phosphite / phosphorous acid is not a plant nutrient. Effective for Downy Mildew control, but not for increasing vine-available phosphorus.

PLANT TISSUE ANALYSIS

<u>Tissue</u>: leaf petioles from leaves opposite cluster

<u>Timing</u>: Bloom (unless problem diagnosing)

Number: 75-100

Labs: Multiple

Interpretation: Diagnostic samples related to nutrient sufficiency ranges that have been generated from similar tissues.

CORRECTION OF K DEFICIENCY						
• Tissue analysis test of mature vineyard:						
– Desired bloom-time values of 1.5 - 2.5%						
• <u>Example</u> :						
– petiole sample shows 1.00 % K Pounds/acre required to correct						
	Degree of deficiency	KCI	K ₂ SO ₄			
Applications in excess of 600 lb/A NOT recommended in one application due to potential for vine salt injury.	Severe	900*	1,200			
	Moderate	600	800			
	Mild	300	400			

CORRECTION OF K DEFICIENCY

- Application:
 - Broadcast and incorporate in pre-plant
 - Band under trellis in established vineyard
 - Fertigation is an option

Chardonnay: 0.19% Mg in petioles, Piedmont Vineyards, 1986

EXAMPLES OF MAGNESIUM DEFICIENCY SYMPTOMS

- Symptoms typically on basal to mid-shoot leaves
- More common with low soil pH (< 5.5)
- Impact on fruit yield and quality not well quantified.

Correction of Mg deficiency

- Pre-plant soil test: 96 to 168 lbs Mg/acre (48 - 84 ppm) desired range (VT Rx)
- Example:
 - Soil test shows 50 lbs/acre Mg and pH of 6.1
 - Rx: adjust pH with dolomitic lime to raise pH to 6.8. This is likely to bring Mg within recommended range
 - If pH acceptable, adjust Mg with MgSO₄ (300 lbs/acre [50 lbs MgO/acre]

Apparent magnesium deficiency of Chambourcin. Symptoms may be due in part to low nitrogen And, Chambourcin may have higher Mg requirement than those varieties for which standards were developed								ue in nay ose		
	Percent of dry weight					Parts per million				
Element	Ν	Р	K	Mg	Са	В	Zn	Mn	Fe	Cu
Sample	0.75	0.47	2.44	0.46	1.93	30	56	228	47	13
Low limit	1.2	0.15	1.5	0.30	1.00	30	35	25	40	7
										·

