Research efforts to achieve a more favorable vine balance with Cabernet Sauvignon

Tony Wolf Professor of viticulture 18 February 2011 Virginia Vineyards Association's Annual Technical Conference

Tremain Hatch

Cain Hickey

Gill Giese

High capacity vines

What is "balance"?

Amount of vegetative growth

Duration of vegetative growth

Relationship of leaf area or other vegetative growth metrics to crop

How does balance relate to vine "capacity"?

How does balance and capacity relate to wine quality potential?

Low capacity vines

Measures of balance

Crop load – 5 to 10 pounds of crop per pound of cane prunings

- Leaf area: 1.2 to 1.5 m² of leaf area per kg of crop
- Leaf area: about 1.5 m² of leaf area per meter of canopy
- Shoot growth cessation at or shortly before veraison; minimal lateral shoot development
- Greater homogeneity of fruit ripening and year-to-year performance Consequences of imbalance
 - Increased disease pressure within canopy and on fruit
 - Reduced fruit quality (pH/acid imbalance, color)
 - Potential negative impact on tannins and herbaceousness
 - Added labor costs in canopy management (remedial measures)

Remedial means of targeting vine balance

These measures generally treat the symptoms, and not necessarily the fundamental causes of imbalance

Shoot hedging
Selective leaf removal
lateral shoot removal

Proactive means of targeting vine balance

Site Selection (topography, soils and soil hydrology

- > Surface drainage (avoid areas of soil /water import)
- > Slopes decreased moisture retention with increased slope
- Internal drainage (permeability)
- > Water-holding capacity
- Fertility (avoid high OM soils)

	Importance in	Desirable	Undesirable	Ability to
Soil feature	site selection ¹	value	value	modify ²
Internal water	****	> 2" / hour	< 2" / hour	+ (tile drainage is
drainage				possible but
				expensive
Water holding	****	< 0.10 inch/	> 0.15 inch/	++ (can be
capacity		inch of soil	inch of soil	increased)
Effective rooting	***	> 3 feet	< 1 foot in the	(deep ripping
depth			absence of	may increase
			irrigation	rooting depth)
Moist bulk density	***	< 1.5 g/cm ³	\geq 1.5 g/cm ³	(can be
				increased)
Fertility	****	Relatively	Highly fertile	+++ (can be
		infertile		increased)

¹ Relative importance, with multiple asterisks indicating greater importance in site selection process.

² Relative ease of adjustment: +++ denotes readily adjusted and – indicating increasingly difficult or impossible (---) to practically adjust.

Proactive means of targeting vine balance

More elaborate training systems

Divided canopy training as example

Proactive means of targeting vine balance

Other measures

Planting density?
Rootstocks
Cover Crops
Root restriction?
Root-pruning?

Cane pruning weights from cover crop / root-pruning project in Dobson, NC (2008) Gill Giese's project. Pruning weights are in kg per vine, where the "optimum" vine size would range from 0.55 – 1.10 kg per vine (vines are 6' apart in the row.

	Root-	pruned	
Treatment	Yes No		Mean
Fescue 31	0.86	1.35	1.11 bc
Aurora Gold fescue	0.90	1.40	1.15 bc
Perennial Ryegrass	1.00	1.46	1.23 b
Orchardgrass	1.11	1.42	1.27 b
Elite II turf-type fescue	0.79	1.19	0.99 c
Herbicide Control	1.41	1.52	1.47 a

Fruit exposure from cover crop / root-pruning project in Dobson, NC (2007) Gill Giese's project. Percent shaded cluster counts were derived from canopy point quadrat analyses.

Treatments

Cover crops vs herb. strip Rootstocks Root manipulation

			Plots with cover crop under trellis					
			Plots v	withou	t cover	crop u	nder tr	ellis
3 =	riparia	L						
2 =	420-A		or					
1 =	101-14	4						

Data collection:

- Vines planted 2006; data collected since 2008
- Vegetative development (lateral growth, leaf area, canopy architecture)
- Plant water status
- Soil moisture
 - Fruit components of yield and fruit chemistry

Shoot growth rate

Lateral shoot development - additional leaf area - additional shade

Sum of lateral leaves borne at nodes 3 to 7 of primary shoots and "shoot tip activity score" veraison, 2010

Cane pruning weights were reduced by under-trellis cover crop (47%), riparia rootstock (25%) and by root restriction (> 50%).

Occlusion layers are, for the most part, leaves – here the number of leaves potentially blocking sunlight penetration into fruit zone.

When pruning weight exceeds 0.60 kg/m of canopy, the OLN is generally in excess of 2 (about 1.5 is desirable).

Cane pruning weight (kg/m of canopy)

			2008	2009	2008	2009	2008	2009
UTGC	Rootstock	RM	Br	ix	p	н	ТА (g/L)
UTCC	101-14	NRR	24.2	23.6	3.4	3.3	4.9	7.0
		RR	23.3	22.7	3.4	3.4	4.4	5.6
	420-A	NRR	23.9	23.2	3.4	3.3	4.4	8.0
		RR	23.9	22.8	3.5	3.4	4.1	5.8
	riparia	NRR	23.5	23.4	3.4	3.3	4.8	7.2
		RR	22.8	22.6	3.5	3.4	5.1	6.0
Herbicide	101-14	NRR	23.1	23.1	3.3	3.4	6.1	6.9
		RR	22.0	22.7	3.3	3.4	5.9	5.7
	420-A	NRR	22.4	22.7	3.2	3.3	5.8	7.6
		RR	21.6	22.3	3.2	3.3	5.9	6.3
	riparia	NRR	22.4	23.2	3.2	3.4	6.2	7.6
		RR	21.5	22.2	3.2	3.3	6.1	6.4
Effect	p-\	value						
UTGC			0.0023	ns	0.015	ns	0.0162	ns
Rootstock			ns	ns	ns	ns	ns	ns
Rootstock	X UTGC		ns	ns	ns	ns	ns	ns
RM			0.001	0.0044	0.035	0.0109	ns	0.0009
RM X UTGO			ns	ns	0.0353	0.0003	ns	ns
RM X Roots	stock X UTGC		ns	ns	ns	ns	ns	ns

Some of the 2010 harvest data

Treatment	Avg. Berry Weight	Crop yield/vine (lbs)	°Brix
NRM + Herb	1.29 a	8.5 a	25.04 bc
NRM + CC	1.25 a	7.4 b	25.38 b
LOW + RBG + Herb	1.23 ab	7.3 bc	23.42 d
HIGH + RBG + Herb	1.12 bc	6.5 bc	24.76 c
LOW + RBG + CC	1.06 c	6.3 c	25.94 a
HIGH + RBG + CC	0.90 d	4.6 d	23.6 d

WirginiaTech

Grapevine water relations

-How do treatments impact seasonal water status?

-What thresholds are associated with cessation of shoot growth, but not so severe as to stop carbon assimilation?

Leaf net assimilation rates over the 2010 growing season. Note that root-bag treatment vines were typically depressed, relative to non-rootbagged vines.

Post-fermentation wine chemistry, 2009

			Malic			
		Alcohol	acid		TA*	VA†
UTGC	RM	(v/v)	(g/L)	рН	(g/L)	(g/L)
Herbicide	NRR	13.57	3.75	3.73	7.95	0.49
UTCC	NRR	13.43	3.47	3.66	7.95	0.49
Herbicide	RR	13.20	2.76	3.54	7.49	0.40
UTCC	RR	13.47	2.75	3.55	7.62	0.42
ANOVA						
		р-				
Effect		value				
UTGC		ns	ns	ns	ns	ns
RM		ns	0.0044	0.0046	0.0355	0.0237
UTGC X						
RM		ns	ns	0.0544	ns	ns

Post fermentation color analysis.

						color	
						density	Hue
UTGC	RM	A ₂₈₀	A ₃₂₀	A ₄₂₀	A ₅₂₀	(A)	(A)
Herbicide	NRR	26.3	10.3	2.6	3.5	6.1	0.7
UTCC	NRR	30.5	12.4	3.2	4.6	7.8	0.7
Herbicide	RR	31.0	11.1	2.7	4.2	6.9	0.6
UTCC	RR	35.1	11.9	3.4	5.1	8.6	0.7
Probability	y of > /	Ρ					
Effect							
UTGC		ns	ns	ns	0.0463	0.05	ns
RM		ns	ns	ns	0.0287	0.03	0.05
UTGC x							
RM		ns	ns	ns	ns	ns	ns

Preliminary summary -- and where do we go from here?

Root restriction and under-trellis cover crop (UTCC) were independently effective in suppressing vegetative development of vines

Riparia Gloire rootstock was the most effective rootstock in limiting vegetative development amongst the three evaluated

Canopy architecture was generally improved by both UTCC and by root restriction, but generally unaffected by rootstock

> The principal direct effect of the UTCC and the root-restriction treatments was a sustained reduction in stem (xylem) water potential (ψ_{stem})

Differences in wine were detected among the treatments, but sensory evaluations are necessary to fully describe the wines

Plant nitrogen levels were depressed by UTCC in both 2009 and 2010

