Crop Protection Entomology in Tree Fruit and Grapes at the AHSAREC

Chris Bergh, PhD, cbergh@vt.edu, 540-232-6046 75% Research:25% Extension Publication 456-419

2020 Spray Bulletin for Commercial Tree Fruit Growers

Virginia, West Virginia, and University of Maryland Extension

Home Grounds and Animals

ENTO-336F

Vigina Cooperate Elemeira program and employment are open to all, regardess of agucias: disability genesis genetic anches, genetic enformation, una subratori, disability genetic anches, genetic enformation, wateren attata, er any after tassa enforctato to ja es-A equia opportunity (interviewa accentemptore), based in Onterseene of Cooperative Ensurien vois, Virgina Polytechnic Instituta al Stata University, Virgina Data University, and the U.S. Department of Agenuture cooperating. Edimin. J. Janes, Dividita Virgina Cooperative Ensurient, Virgina Rich, Biscobard, M. Mortisma, Administrator, 1990: Ensurien Popen, Virgina Taski, Divisity, Pontalory, B.

2020 PEST MANAGEMENT GUIDE

Published by: Virginia Cooperative Extension

Content Coordinators:

Joyce G. Latimer and David Close, School of Plant and Environmental Sciences

Produced by Virginia Cooperative Extension Publications, Virginia Tech, 2020

www.ext.vt.edu

n programs and employment are open to all, regardie or identify anothe excession, reational mide, politica

Representative table from the Spray Bulletin for Commercial Tree Fruit growers showing insect and mite control options for apple orchards at Petal Fall

PETAL FALL SPRAY ¹ (cont.)					
Insects/Mites	Effectiveness	Suggested Chemicals	100 gal Dilute	Acre Concentrate	
Redbanded leafroller (RBLR) ³	E = 2, 24 G = 3, 4	 ¹²Lorsban Advanced, Nufos 4E or Yuma 4E or Lorsban 75WG 	3 pt or 2 lb	-	
Curculio (PC) ³	E = 3, 16 G = 13, 25	2. ² Lannate 90SP or Lannate LV	4 oz	0.5-1 lb 1.5-3 pt	
Rosy apple aphid (RAA)	E = 5, 13, 20 G = 2, 8, 11	3. Imidan 70WSB	16-21 oz	3-4 lb	
		4. Bacillus thuringiensis	See label	See label	
Oriental fruit moth (OFM)		5. ¹⁸ Movento 2SC	-	6-9 fl oz	
		6. Apollo 42SC	-	4-8 fl oz	
Mites (ERM)	E = 6, 7, 12, 14, 17, 27, 28, 29, 30	 Savey 50DF or Onager Optek 	-	3-6 oz or 12-24 fl oz	
	G = 11, 18, 23, 26	8. Aza-Direct or Neemazad	-	1 qt	
Green fruitworms (GFW)4	G = 2, 3, 4, 21, 24	9. Madex	-	0.5-3 fl oz	
Defoliating caterpillars ⁵	E = 4	11. ⁷ Vydate L	1 pt	3 pt	
Detonating caterplians	G = 2, 3	12. 13Agri-Mek, Abba or	2.5-5 fl oz or	10-20 fl oz or	
Tentiform leafminers	E = 11, 12, 13 G = 8	Temprano 0.15EC or Agri-Mek 0.7SC	0.5-1.0 fl oz	2.25-4.25 fl oz	
(-2)		13. ¹⁶ Assail 30SG	-	2.5-8.0 oz	
White apple leafhopper (WALH) ⁶	E = 2, 13 G = 11, 12, 19, 21, 25, 28	14. Nealta	-	13.7 fl oz	
		16. Avaunt 30WDG	-	5-6 oz	
		17. 9Nexter SC	-	11-17 oz	
Codling moth (CM)	E = 31 G = 9	18. Vendex 50W	6 oz	18 oz	
	G = 9	19. 11Sevin 50W	2 lb	6 lb	
European apple sawfly (EAS) ¹⁰	E = 3, 13, 16 G = 19, 21	20. Beleaf 50SG	-	2-2.8 oz	
Mullein bug (MB)	E = 13	21. 11Sevin XLR PLUS	2 pt	6 pt	
		22. Mating disruption	-	See label	
Dogwood borer (DB) ¹²	E = 1 G = 13, 22	23. 14Ultra Fine oil	2 gal		
		24. ¹⁵ Intrepid 2F	-	8-16 fl oz	
San Jose Scale (SJS)	G = 5	25. Surround WP	-	25 lb	
		26. [®] Acramite 50WS or Banter SC	-	12-16 oz	
		27. Zeal 72WDG	-	2-3 oz	
		28. Portal 5EC	10 fl oz	2 pt	
		29. Kanemite 15SC	-	21-31 fl oz	
		30. Envidor 2SC	-	16-18 fl oz	
		31. Rimon 0.83EC	-	20-40 fl oz	

70 Bearing Apple Orchards

Potential Insect and Mite Pests of Pome and Stone Fruit

Thrips

24

Pest group	# of species	
Aphids	3	
Leafhoppers	2	
Moths (larvae)	8	
Flies (larvae)	1	
Beetles	2	
True bugs	3+	
Scale insects	1	
Sawfly	1	
Thrips	1	
Spider mites	2	

Total

Total

1

14

Direct vs Indirect Pests of Pome and Stone Fruit

Crop	# of direct pests	# of indirect pests	
Pome fruit	15	9	
Stone fruit	8	5	

Direct pests attack the fruit

Indirect (or secondary) pests attack the leaves, branches, or trunk

What can happen if a grower doesn't manage orchard insect pests?

"Comparison of products for control of first generation codling moth in apples, 2020"

Extension

My role is to assist growers with managing insect and mite pests via educational Extension programming that is informed by my research and that of colleagues at other institutions

Off-season Extension meetings

In-season Extension meetings

https://blogs.ext.vt.edu/tree-fruit-pest/

Traps baited with pheromone lures monitored weekly throughout the growing season

Extension

https://blogs.ext.vt.edu/tree-fruit-pest/

and Forest Crops 2020 PEST MANAGEMENT GUIDE Published by: Virginia Cooperative Extension Content Coordinators Chuan Hong, School of Plant and Environmental Sciences Eric Day, Department of Entomology Produced by Virginia Cooperative Extension Publications, Virginia Tech, 2020 www.ext.vt.edu ENTO-337E Virginia Cooperative Extension Virginia State Universit

Home Grounds and Animals

2020 PEST

GUIDE

Published by:

Tech, 2020

www.ext.vt.edu

Content Coordinators:

Joyce G. Latimer and

Environmental Sciences

Virginia Cooperative Extension

irginia Tech · Virginia State Universit

- Annual revisions to Pest Management Guides
- E-mail and telephone consultations
- Outreach activities and presentations

Annual research station trials evaluating the effectiveness of individual insecticides and insecticide programs are critical to informing recommendations to growers

Grad students, summer students, colleagues

Applied ecology and behavior of pest and beneficial species that is relevant to fruit protection

- Alternative tactics
- Monitoring tools
- Insect biology
- Biological control

Field evaluations of the contribution of predators and the parasitoid, *Aphelinus mali*, to biological control of woolly apple aphid, *Eriosoma lanigerum*, in Virginia, USA

J. Christopher Bergh · Jon W. Stallings

Environmental Entomology, 45(3), 2016, 663–670 doi: 10.1093/ee/nvw018 Advance Access Publication Date: 24 March 2016 Research article OXFORD

Plant–Insect Interactions

Host Plant Effects on <mark>Halyomorpha halys</mark> (Hemiptera: Pentatomidae) Nymphal Development and Survivorship

Angelita L. Acebes-Doria,^{1,2} Tracy C. Leskey,³ and J. Christopher Bergh¹

(wileyonlinelibrary.com) DOI 10.1002/ps.5156

Successful management of <u>Halyomorpha halys</u> (Hemiptera: Pentatomidae) in commercial apple orchards with an attract-and-kill strategy

William R Morrison III,^{a*}[©] Brett R Blaauw,^b Brent D Short,^c[©] Anne L Nielsen,^d James C Bergh,^e Greg Krawczyk,^f Yong-Lak Park,^g Bryan Butler,^h Ashot Khrimianⁱ and Tracy C Leskey^c

> Environmental Entomology, 48(1), 2019, 173–180 doi: 10.1093/ee/nvy180 Advance Access Publication Date: 19 December 2018 Research

Behavior

Vertical Sampling in Tree Canopies for Halyomorpha halys (Hemiptera: Pentatomidae) Life Stages and its Egg Parasitoid, Trissolcus japonicus (Hymenoptera: Scelionidae)

Nicole F. Quinn, ^{1,5} Elijah J. Talamas,² Angelita L. Acebes-Doria,³ Tracy C. Leskey,⁴ and J. Christopher Bergh¹

Spatial Distribution of Grape Root Borer (Lepidoptera: Sesiidae) Infestations in Virginia Vineyards and Implications for Sampling

J. P. RIJAL,^{1,2} C. C. BREWSTER,³ and J. C. BERGH¹

Environ. Entomol. 43(3): 716-728 (2014); DOI: http://dx.doi.org/10.1603/EN13285

Crop Protection 89 (2016) 58-65

Injury to apples and peaches at harvest from feeding by Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) nymphs early and late in the season

Angelita L. Acebes-Doria ^{a, *}, Tracy C. Leskey ^b, J. Christopher Bergh ^a

Entomologia Experimentalis et Applicata

DOI: 10.1111/eea.12539

Characterizing spring emergence of adult Halyomorpha halys using experimental overwintering shelters and commercial pheromone traps

J. Christopher Bergh¹*, William R. Morrison III², Shimat V. Joseph³ & Tracy C. Leskey²

Journal of Integrated Pest Management, (2020) 11(1): 4; 1–16
doi: 10.1093/jipm/pmaa001
Case Study

Invasion of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) into the United States: Developing a National Response to an Invasive Species Crisis Through Collaborative Research and Outreach Efforts

Dalton Ludwick,^{1,1} William R. Morrison, III,^{2,1,9} Angelita L. Acebes-Doria,^{3,9} Arthur M. Agnello,⁴ J. Christopher Bergh,⁵ Matthew L. Buffington,⁶ George C. Hamilton,⁷ Jayson K. Harper,⁶ Kim A. Hoelmer,⁹ Gregory Krawczyk,¹⁰ Thomas P. Kuhar,^{11,9} Douglas G. Pfeiffer,¹¹ Anne L. Nielsen,^{12,0} Kevin B. Rice,¹³ Cesar Rodriguez-Saona,¹⁴ Peter W. Shearer,¹⁵ Paula M. Shrewsbury,¹⁶ Elijah J. Talamas,¹⁷ James F. Walgenbach,¹⁸ Nik G. Wiman,^{19,9} and Tracy C. Leskey^{1,20}

Brown marmorated stink bug (BMSB) and prospects for its biological control via a non-native egg parasitoid

BMSB is also a significant nuisance pest

Current distribution and pest status of BMSB in the USA

Moves into crops throughout the season from nearby wild host plants, and from these plants to buildings during its autumn dispersal

Apple orchards in Frederick County, VA adjacent to unmanaged woodlands

How to suppress BMSB populations throughout the landscape to reduce its impacts on crop producers and owners of homes and businesses?

Biological control can help achieve this goal

Biological control: The actions of natural enemies on pest populations

Predators (feed on insects)

Parasitoid wasps (lay eggs in insects)

Invasive insects typically arrive in a new area without the biocontrol agents that suppress them in the native range

Native predators and parasitoids in the USA do attack BMSB, but so far at in sufficient levels

Samurai wasp

- native to Asia
- effective BMSB egg parasitoid
- 1st USA detection in 2014

Current distribution of BMSB

Current distribution of Samurai wasp

Current distribution of BMSB

BC BC AB AB sк SK QC MB QC MB ON ON MA MT MT ND ND OR MN MIN OR ID. SD SD WY WY IA IA NE. NE. 0 NV. NV UT UT 0 CA CA CO co KS KS MO MO OK OK AZ ΑZ AR AR NM. SC **NM** SC MS AI GA MS AL GA Field Recoveries of Trissolcus japonicus TХ TX. 0 2014 0 2015 2016 0 2017 BMSB detected / intercepted BMSB detected / intercepted (i) 0 2018 Nuisance problems only (i) Nuisance problems only 2019 Agricultural and nuisance problems (i) Agricultural and nuisance problems Severe agricultural and nuisance Severe agricultural and nuisance problems reported problems reported Updated: 3/4/2020 Updated: 3/4/2020

Much interest in tracking the spread of Samurai wasp and its impact on BMSB in the USA

Current distribution of Samurai wasp

Where are BMSB and its egg masses in the tree canopy? Where is the Samurai wasp? How to sample for Samurai wasp?

Vertical transects of BMSB pheromone traps

Felled and inspected the foliage of BMSB host trees for egg masses

BMSB captures increased with increasing trap elevation

Most BMSB egg masses in mid-canopy Samurai wasp detected only from mid- and upper-canopy

Quinn, NF, EJ Talamas, TC Leskey, and JC Bergh. 2019. Vertical sampling in tree canopy for *Halyomorpha halys* life stages and its egg parasitoid, *Trissolcus japonicus*. Environmental Entomology 48: 173-180

Quinn, NF, EJ Talamas, TC Leskey, and JC Bergh. 2019. Sampling methods for adventive *Trissolcus japonicus* in a wild host tree of *Halyomorpha halys*. Journal of Economic Entomology 112: 1997-2000

Our recent and on-going research on Samurai wasp, using yellow traps as a sampling tool

- 1. Do tree species or habitat type affect Samurai wasp detections?
- 2. What is the relationship between captures of BMSB and Samurai wasp?
- 3. Do chemical stimuli associated with BMSB increase Samurai wasp captures?
- 4. Can we promote the establishment of Samurai wasp in Virginia?

Our recent and on-going research on Samurai wasp, using yellow traps as a sampling tool

Optimize the efficiency and effectiveness of Samurai wasp surveillance, toward a better understanding of its spread and abundance, its impact on BMSB populations, and its establishment throughout Virginia

