Potassium Management in Virginia Cotton

DR. HUNTER FRAME MARCH 16,2017 VA TECH TIDEWATER AREC

Studies Evaluating Potassium Response in Cotton

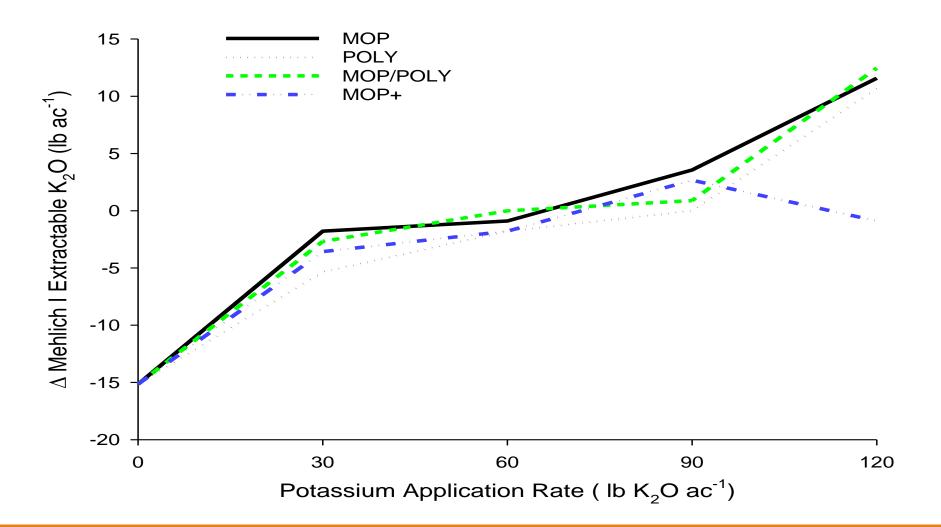
- 1) Phosphorus and Potassium Placement
 - i. Five nutrient management systems
 - ii. K applied at soil test levels
- 2) Polyhalite as a new K fertilizer source in cotton
 - i. Four fertilizer sources (MOP, POLY, MOP+POLY, and MOP+)
 - ii. Four K application rates (30, 60, 90, and 120 lb K2O per acre)
- 3) Potassium rate by placement
 - i. Injected (0-0-15) vs. broadcast (0-0-60)
 - ii. Five K rates (0, 40, 80, 120, and 160 lb K2O per acre)
- 4) Potassium rate by application timing
 - i. Three application timings (100% at-planting, 50% AP + 50% 4-5 leaf stage, and100% 4.5 leaf stage)
 - ii. Five K rates (0, 40, 80, 120, and 160 lb K2O per acre)

Mehlich I Soil Test Results for 2013-2015 Locations

Depth	TAF	REC	Lew	iston				
inches	P	K	Р	K				
		ppm						
0-3	45 (H+)¶	95 (H-)	22 (H-)	96 (H-)				
3-6	36 (H)	89 (H-)	16 (M+)	59 (M)				
6-9	24 (H-)	72 (M)	12 (M)	43 (M-)				
9-12	17 (M+)	76 (M+)	6 (L+)	40 (M-)				
¶ Indicates the so	oil test level based	on Virginia's	s soil test cali	bration				

Soil Test Levels for Locations

Location	Mehlich I Extractable Nutrients							
	Р	К	Са	Mg				
		r	ng kg⁻¹					
2015	35 (H [¶])	73 (M)	211 (L)	33 (L+)				
2016	23 (H-)	18 (L)	345 (L+)	40 (M-)				


¶ Indicates the soil test level based on Virginia's soil test calibration

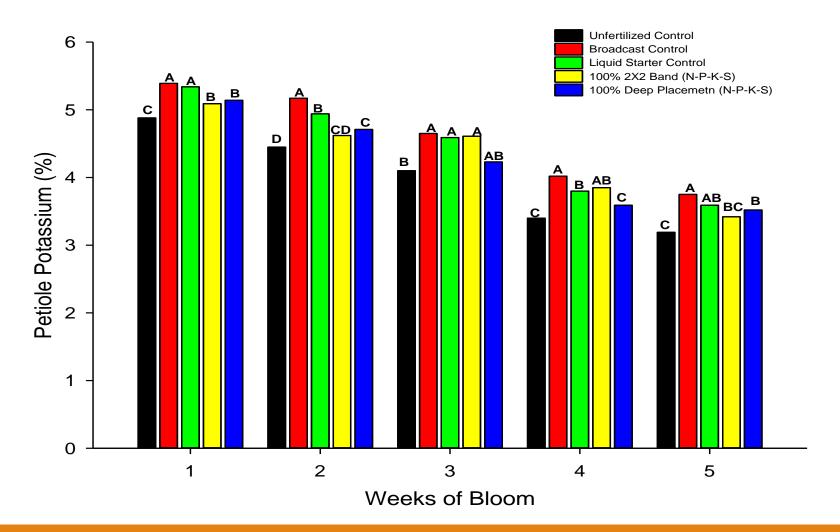
2015 Change in Soil Test Potassium

2016 Change in Soil Test Potassium

Uptake of K, Ca, Mg, and S at 1st square (45 Days after Planting)

Trt #	Source	Potassium Rate		Nutrient U	ptake at MHS	
		lb K₂O ac⁻¹	K₂O	Ca	Mg	S
				lt) ac ⁻¹	
			(- 0 -		
1	Control	0	33.6	18.1	4.0	3.9
2	MOP	30	33.7	14.4	3.5	2.9
3	MOP	60	32.4	16.4	3.8	3.1
4	MOP	90	30.4	13.9	3.1	2.4
5	MOP	120	32.0	17.5	3.7	4.0
6	Polyhalite	30	31.6	15.3	3.5	5.4
7	Polyhalite	60	34.2	15.2	3.5	7.1
8	Polyhalite	90	34.4	17.9	4.0	7.7
9	Polyhalite	120	29.8	17.4	3.5	8.6
10	MOP/Poly	30	30.5	16.1	3.7	5.0
11	MOP/Poly	60	34.7	17.9	3.9	6.3
12	MOP/Poly	90	30.8	16.7	3.6	6.6
13	MOP/Poly	120	31.0	16.4	3.6	6.4
14	MOP+	30	28.1	15.1	3.4	4.6
15	MOP+	60	31.2	15.4	3.6	4.8
16	MOP+	90	34.6	18.4	4.2	6.1
17	MOP+	120	31.1	17.4	3.8	5.7

Impact of Drought in August at SHC location



Petiole Potassium Sufficiency Range for Cotton

"California" Petiole K Interpretation (Bassett and MacKenzie 1976)

Time of sampling	% Potassium (K)
Week of first bloom	4.0-5.5
Bloom + 4 weeks	3.0-4.0
Bloom + 6 weeks	1.5-2.5
Bloom + 8 weeks	1.0-2.0

Petiole Potassium Concentrations During Bloom Period for All Sites 2013-2015

Leaf Tissue Nutrient Concentrations at TAREC from 2013-2015

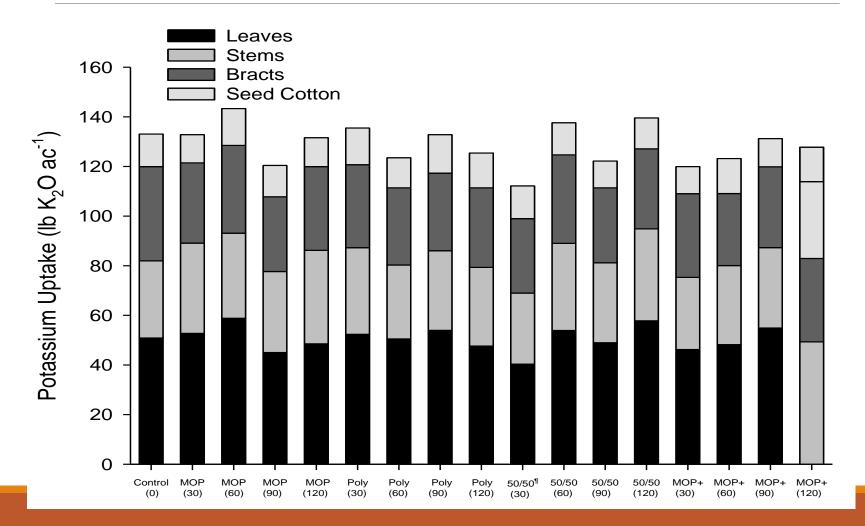
Nutrient Systems	Leaf Nutrient Concentrations								
	1 ^{st‡}					5 th			
	Ν	Р	K	S	Ν	Р	K	S	
					%				
Unfertilized Control	3.41 c*	0.34	1.57	0.54 b	2.76 c	0.26	1.29	0.71	
Broadcast Agronomic Control	4.32 a	0.32	1.77	0.76 a	3.49 ab	0.24	1.47	0.77	
Liquid Starter Control	4.23 a	0.32	1.67	0.68 a	3.45 ab	0.23	1.44	0.75	
100% 2X2 N-P-K-S	4.29 a	0.31	1.76	0.77 a	3.46 ab	0.23	1.44	0.78	
100% Deep Placement N-P-K-S	4.16 b	0.31	1.66	0.76 a	3.56 a	0.23	1.47	0.77	

*Values with the same letter are not significantly different at $\alpha = 0.05$ ‡ Week of bloom

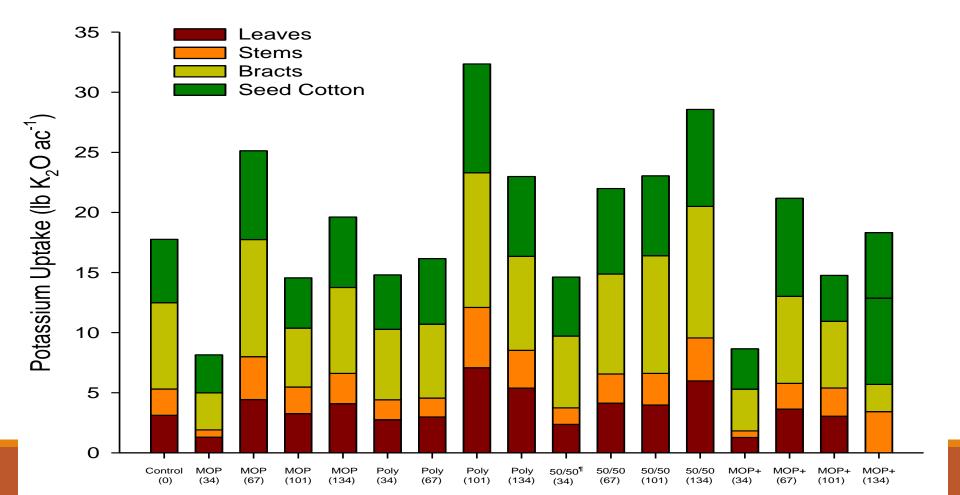
Macronutrients (%)									
N P K Ca Mg S									
early bloom	3.0-4.5	0.2-0.65	1.5-3.0	2.0-3.5	0.3-0.9	0.25-0.8			
late bloom / maturity	3.0-4.5	0.15-0.6	0.75-2.5	2.0-4.0	0.3-0.9	0.3-0.9			

Adapted from Mitchell and Baker (2009)

Leaf Tissue Nutrient Concentrations at Lewiston from 2013-2015

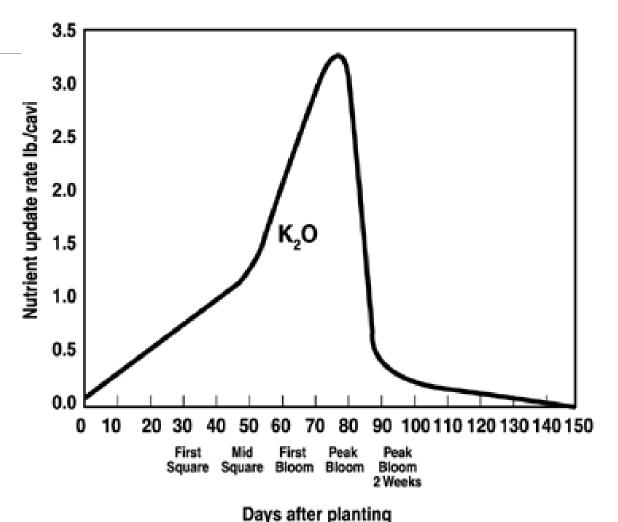

Nutrient Systems	Leaf Nutrient Concentrations								
	1 ^{st‡}				5 th				
	Ν	Р	Κ	S	Ν	Р	K	S	
					- %				
Unfertilized Control	4.42	0.29 a*	1.09	0.60 c	3.95	0.28	1.26	0.71 c	
Broadcast Agronomic Control	4.26	0.28 ab	1.12	0.69 b	3.92	0.29	1.29	0.79 b	
Liquid Starter Control	4.31	0.26 c	1.09	0.67 bc	3.93	0.28	1.27	0.80 b	
100% 2X2 N-P-K-S	4.40	0.27 bc	1.22	0.85 a	3.91	0.29	1.31	0.89 a	
100% Deep Placement N-P-K-S	4.28	0.29 a	1.17	0.75 b	3.87	0.28	1.25	0.82 b	

*Values with the same letter are not significantly different at $\alpha = 0.05$ ‡ Week of bloom


Macronutrients (%)									
N P K Ca Mg S									
early bloom	3.0-4.5	0.2-0.65	1.5-3.0	2.0-3.5	0.3-0.9	0.25-0.8			
late bloom / maturity	3.0-4.5	0.15-0.6	0.75-2.5	2.0-4.0	0.3-0.9	0.3-0.9			

The following sufficiency ranges were compiled from several sources (Anderson and others 1971; Hodges and Hadden 1992; Mullins and Burmester 1990, 1992, 1993; Plank 1988; Reeves and Mullins 1993; Sabbe and Mackenzie 1973; Sabbe and others 1972).

2015 Potassium Uptake at Cutout (85 days after planting)



2016 Potassium Uptake at Cutout (85 days after planting)

Potassium Uptake in Cotton

- If we apply 10 lbs/acre 13-0-44 (potassium nitrate) as a foliar spray in 15 gal mix/acre
- ➤ 4.4 lb. K₂O / acre
- The max uptake rate is 3.2 lb. K₂O /acre
- You have applied 1.5 days of K demand... assuming 100% efficiency of your application

Courtesy of Mullins and Burmester (1990)

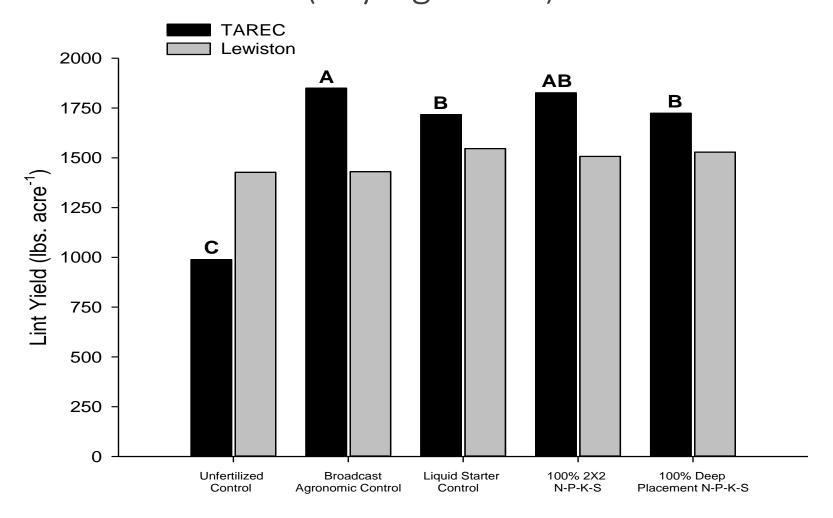
Let's look at this another way...

Say we want to use 0-0-25-17S to foliar feed... 17 trips to supply the needed K • 1 Qt/acre = 3 lbs K₂O/acre

Soil test K = 180 lbs $K_2O/acre$ (Medium)

Assume that 75% of K uptake is supplied by soil

• 200 lbs K₂O uptake for 1,500 lbs lint per acre

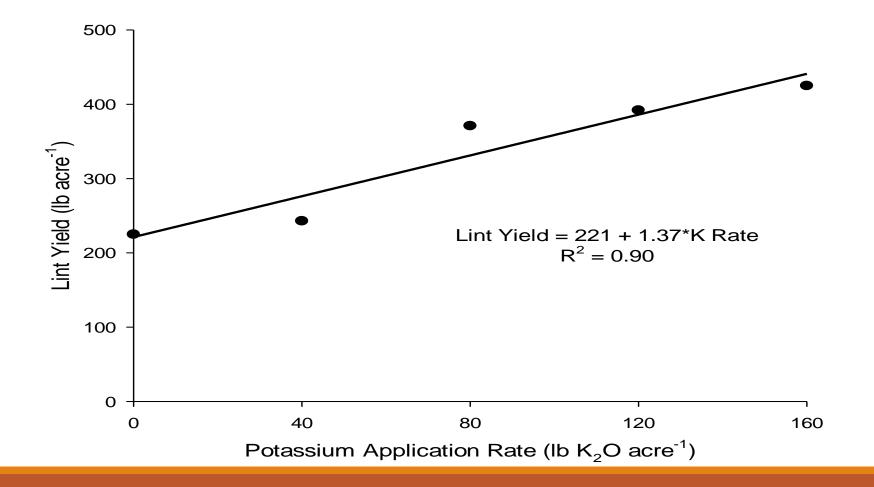

Need and additional 50 lbs K₂O/acre

If you foliar feed once a week.... That's 3-4 months of applications

THIS IS ASSUMING ALMOST COMPLETE DEPLETION OF SOIL TEST K AND 100% EFFICIENCY IN FOLIAR FEEDING OF K

50 lbs $K_2O/acre / 3$ lbs $K_2O/acre$ applied per trip

Lint Yield and Nutrient Management Systems from 2013-2015 (Phytogen 499)



Potassium Rate Response in 2016 (Deltapine 1522)

Leaf K (%)		Lint Turnout	Lint Yield
1 st	5 th	Ib lint Ib ⁻¹ seed cotton	lb ac⁻¹
0.83	0.23 c*	0.45	96 c
0.97	0.33 bc	0.45	277 b
0.94	0.44 b	0.45	441 a
1.15	0.73 a	0.46	351 ab
1.16	0.75 a	0.44	395 ab
	1 st 0.83 0.97 0.94 1.15	1st5th0.830.23 c*0.970.33 bc0.940.44 b1.150.73 a	1 st 5 th lb lint lb ⁻¹ seed cotton 0.83 0.23 c* 0.45 0.97 0.33 bc 0.45 0.94 0.44 b 0.45 1.15 0.73 a 0.46

* Values with the same letter are not significantly different at alpha = 0.05.

Potassium Rate Response in 2016 (Phytogen 333)

Summary of Potassium Research

- Responses to K rate on M+ to VH soil tests have been rare...
 - Especially when receiving adequate rainfall
- In 2016 the low soil test K site was responsive to K rates up to 60 lb K20 per acre
 - Yields were severely limited due to weather conditions
- Leaf K concentrations were not responsive to K application rates
 - Petiole K was sensitive to K source and nutrient management system

Summary of Potassium Research (cont.)

- Leaf K and petiole K concentrations decreased from the 1st to 5th weeks of bloom
- Foliar feeding of K is not practical as the sole source of providing K
- The broadcast system produced higher petiole K concentrations and is a faster and cheaper method of applying K
 - No differences in lint yield and K placement have been documented
- No timing of application differences were observed in 2016, but only 1 year of data is available
- More to come on K demand and changes in soil test K over time...

