

Retrieved from: http://www.agmrc.org/commodities__products/vegetables/sweet-corn/

Retrieved from: http://www.funpub.net/funny-pictures/Various/218/agriculture

Nitrogen and Sulfur Management in Cotton

Dr. Hunter Frame Virginia Tech TAREC March 16, 2017

Source: http://www.ipni.net/ppiweb/ppibase.nsf/\$webindex/article=C2452786852569B5005AB164B438D5E8

Loss Pathways for Nitrogen

- ♦ Ammonia Volatilization
 - Ammonia can be converted to greenhouse gases
 - Contributes to formation of particulate matter
- Nitrate Leaching
 - ♦ Groundwater pollution
- Denitrification
 - NO_x gases which are greenhouse gases

- ♦ Runoff and Erosion
 - ♦ Pollution of surface waters
 - Contributes to Eutrophication (Chesapeake Bay)
- Crop harvest
 - ♦ Global NUE is 33%
 - ♦ Probably between 40-50% in US

Savings from Improving Nitrogen Use Efficiency

- Global Nitrogen Use Efficiency (NUE) = 33%*
- 1,275,516 tons N
 - N savings if NUE is increased by 1% (constant yields)
- \$892,861,200 savings at \$0.35/lb N

Fig. 2. Estimated N deposition from global total N (NOy and NHx) emissions, totaling 105 Tg N y⁻¹. The unit scale is kg N ha⁻¹y⁻¹, modified from the original units (mg m⁻²y⁻¹).

(F. Dentener et al. 2006. Global Biogeochem. Cycles 20, GB4003)

105 Tg = 231 billon pounds N = \$81 billion

Reactive Nitrogen Generation

Global population trends from 1860 to 2000 (billions, left axis) and reactive nitrogen (Nr) creation (teragrams nitrogen [Tg N] per year, right axis). (Galloway et al., 2003)

IPNI. 4R Diagram. 4R Nutrient Stewardship Portal. International Plant Nutrition Institute. June 2009. http://www.ipni.net/4r

Common Sources of Nitrogen

- □ Anhydrous Ammonia (82-0-0)
- Granular Urea (46-0-0)
- □ Urea Ammonium Nitrate Solutions
 - 28-32% Nitrogen
- □ Ammonium Sulfate
- □ Ammonium Nitrate
- □ Organic N Sources
 - Poultry Litter
 - Dairy Slurry/Manure
 - Bio-solids

Liebig's Law of the Minimum

Yield will be limited by the amount of the most limiting nutrient!!!

Current Soil Fertility Recommendations for Cotton

♦ Nitrogen

- Current recommendations: 50 lbs N/acre per bale expected yield
 - ♦ 2 bale = 100 lb N per acre uptake
 - ♦ 3 bale = 150 lb N per acre uptake
- ♦ 20-30% applied pre- or at planting
- ♦ 70-80% applied in-season (1 or 2 applications??????)
- ♦ In-season monitoring with tissue testing

Sulfur

- ♦ Current Recommendations: Apply 20 lbs S per acre
- Easy time to put that out is with side-dress N
- Want to use a source containing sulfate as elemental S needs time to break down and become plant available

Current Nitrogen Management in Cotton

Side-dress N application 70-80% N Single or Split Applications

Summary of N, K, and S Uptake

Nitrogen Uptake

- ♦ 20-30 lb N ac⁻¹ between planting and 1st square
- ♦ From 1st square to harvest cotton needed an additional 100 lb N ac-1
- ♦ 120-140 lb N ac⁻¹ total uptake at defoliation
- ♦ Substantial N can be supplied by soil ~80 lb N ac-1
 - ♦ Depends on soil typed and residual N available
- ♦ Largest sink for N at harvest was cottonseed

Sulfur Uptake

- ♦ 2.5 6 lb S ac⁻¹ between planting and 1st square
 - ♦ Uptake at 1st square can be as high as 8-10 lb S ac-1
- ♦ 15 lb S ac⁻¹ total uptake at cutout at normal S application rates
 - ♦ As high as 25 lb S ac⁻¹
- ♦ 18-22 lb S ac⁻¹ total uptake at defoliation
- ♦ Majority of S uptake occurs prior to cutout and major sink were leaves

Potassium Uptake

- ♦ 30-35 lb K2O ac⁻¹ between planting and 1st square
- ♦ From 1st square to harvest cotton need an additional 100 lb K2O ac-1
- ♦ 120-140 lb K2O ac⁻¹ total uptake at cutout

In-Season Monitoring of Nitrogen Status in Cotton

University Recommended Petiole Nitrate and Phosphorus Concentrations

"Arkansas" Interpretation (Benton and others 1979)

Time of sampling	Nitrate nitrogen (ppm)	Phosphorus (ppm)
Week of bloom	10,000-35,000	>800
Bloom + 1 week	9,000-30,000	*
Bloom + 2 weeks	7,000-25,000	*
Bloom + 3 weeks	5,000-20,000	*
Bloom + 4 weeks	3,000-13,000	*
Bloom + 5 weeks	2,000-8,000	
Bloom + 6 weeks	1,000-5,000	
Bloom + 7 weeks	0-5,000	
Bloom + 8 weeks	0-5,000	

^{*} A decrease in P concentration of more than 300 ppm from the previous week usually indicates moisture stress

"Georgia" Interpretation (Lutrick and others 1986; Plank, personal communication)

"Georgia" Interpretation (Lutrick and others 1980; Plank, personal communication)									
Time of sampling	Nitrate nitrogen (ppm)	Phosphorus (ppm)							
Week before first bloom	7,000-13,000	>800							
Week of bloom	4,500-12,500	>800							
Bloom + 1 week	3,500-11,000	*							
Bloom + 2 weeks	2,500-9,500	*							
Bloom + 3 weeks	1,500-7,500	*							
Bloom + 4 weeks	1,000-7,000	*							
Bloom + 5 weeks	1,000-6,000	*							
Bloom + 6 weeks	500-4,000								
Bloom + 7 weeks	500-4,000								
Bloom + 8 weeks	500-4,000								

^{*} A decrease in P concentration of more than 300 ppm from the previous week usually indicates moisture stress

North Carolina Sufficiency Ranges for Petiole Nitrate-N throughout the Growing Season

Table 4.	Desired range	of petiole	nitrate-nitrogen	(ppm) by grov	vth stage and week
				VEF - / - / O	•

Week	Seedling (s)	Early (E)	Bloom (B)	Fruit (F)	Mature (M)
1	16,000-30,000	12,000-18,000	6,000-12,000	1,000-6,000	200-2,500
2	15,000-25,000	10,000-16,000	5,000-11,000	500-5,000	150-2,000
3	14,000-22,500	8,000-14,000	3,500-10,000	250-4,000	100-1,500
4	13,000-20,000	7,500–13,000	2,000-8,000	100-3,000	50-1,000

Table 1. Consecutive growth stage and week designations for cotton tissue samples															
1	= SEE 4 WK	DLING s 1–4	,	E = EARLY VEGETATIVE GROWTH, 4 WKS 1-4				B = BLOOM, 4 WKS 1-4				F= FRUIT, 4 WKS 1-4			
S1	S2	S3	S4	E1	E2	E3	E4	B1	B2	B3	B4	F1	F2	F3	F4

Fertilizer Source and petiole Nitrate-N at 100 lb N acre-1

Petiole Nitrate-N and Nitrogen Rate

Combined Nitrate-N Concentrations during Bloom in Virginia

Leaf Tissue Nutrient Concentrations at TAREC from 2013-2015

Nutrient Systems	Leaf Nutrient Concentrations								
		1 ^s	t‡			5 th			
	N	P	K	S	N	P	K	S	
					%				
Unfertilized Control	3.41 c*	0.34	1.57	0.54 b	2.76 c	0.26	1.29	0.71	
Broadcast Agronomic Control	4.32 a	0.32	1.77	0.76 a	3.49 ab	0.24	1.47	0.77	
Liquid Starter Control	4.23 a	0.32	1.67	0.68 a	3.45 ab	0.23	1.44	0.75	
100% 2X2 N-P-K-S	4.29 a	0.31	1.76	0.77 a	3.46 ab	0.23	1.44	0.78	
100% Deep Placement N-P-K-S 4.16 b 0.31 1.66 0.76 a 3.56 a 0.23 1.47 0.7 *Values with the same letter are not significantly different at $\alpha = 0.05$ ‡ Week of bloom								0.77	

Macronutrients (%)										
N P K Ca Mg S										
early bloom	3.0-4.5	0.2-0.65	1.5-3.0	2.0-3.5	0.3-0.9	0.25-0.8				
late bloom / maturity	3.0-4.5	0.15-0.6	0.75-2.5	2.0-4.0	0.3-0.9	0.3-0.9				

Combined Leaf Nitrogen and Petiole Nitrate-N 1st Week of Bloom

Nitrogen Management in Cotton at TAREC

Using Tissue Testing For Nitrogen to Predict Lint Yield

Relative Yield, Petiole Nitrate-N, and Leaf Nitrogen during the 1st week of Bloom

In-Season Management Scenarios

- 1. N Management System
 - Split vs Single Side-dress Application
 - ♦ Recommend 50 lbs N per acre per bale of expected yield
- 2. How much N has been applied at side-dressing?
 - ♦ 40-60 lbs N
 - \diamond 70+ 1bs N
- 3. What were the results of the petiole and leaf analysis?
 - ♦ Leaf N?
 - **♦** 0 3.75%
 - **♦** 3.75 5.00%
 - ♦ Petiole Nitrate-N?
 - ♦ 0 4,500 ppm nitrate
 - ♦ 4,500 8,000 ppm
 - ♦ 8,000 + ppm

Making the Appropriate N Decisions

- > Single Side-dress N Application System
 - ♦ 60 lbs N applied at MHS
 - \Leftrightarrow Leaf N @ 1st bloom = 4.00%
 - ♦ Petiole Nitrate = 7,000 ppm
- This scenario is in the "gray area",
 - ♦ Take into account total applied N
 - ♦ 25 lbs or less = Apply an extra 20-30 lbs addition N per acre
 - ♦ 30 lbs or more = Most likely have enough N available to achieve yield goal.
- Weather conditions and early season stress will influence tissue analysis results
- > Maybe not a "Two" Prong Approach... More like a 4-5!
- > The earlier in the bloom period the better correlation to yield and gives more time to correct N problems!!!

Sulfur Management in Cotton

1519 lbs of lint per acre

Apply Sulfur? Why?

1989 2014

Spatial Variability in Soil Testing For Sulfur

2016 Beltwide Cotton Conferences

Petiole Sulfur Concentration, Application Rate, and Variety During the 1st Week of Bloom

Location 1

Location 2

Petiole Sulfur for Fluid N/S Formulations

Petiole S concentration and Fertilizer Source

Sulfur Fertilization of Virginia Cotton

Ratio of Petiole Nitrate-N to Petiole S Concentrations

Location 1

Location 2

Variety and Sulfur Application Rate on Lint Yield in 2015

Location 1

Location 2

Variety and Sulfur Application Rate on Lint Yield in 2016

Nitrogen and Sulfur Interactions in Cotton...

Petiole Nitrate-N and Sulfur Rate During The 1st Week of Bloom

Lint yield and N/S Source Suffolk, vA

Lint yield and N/S Source

Southampton, VA

Lewiston, NC

Fluid N/S Formulations and Lint Yield

Nitrogen and sulfur Rates explaining Lint Yield at Tarec

Leaf and Petiole N:S and Lint Yield at TAREC

Summary

- High nitrogen application rates increased yields at high yielding locations and was detrimental to lint yields at low yielding sites.
 - ♦ When high N rates and high S rates were applied together excess growth made defoliation difficult.
 - ♦ N rate s between 80 -120 lb N per acre optimized lint yields at responsive sites
 - ♦ Critical petiole nitrate-N level of 4,500 ppm nitrate-N
- ♦ Petiole nitrate-N, petiole sulfur, leaf nitrogen, and leaf sulfur concentrations increased with increasing application rates.
- No current sufficiency range is documented for petiole sulfur concentrations
- ♦ Leaf Sulfur concentrations were above current critical levels of 0.25% during the first week of bloom even when no S was applied.
- ♦ 20 lb. S ac⁻¹ maximized yield at the high yielding responsive site.
- ♦ At all locations 24-0-03S increased lint yields above 32-0-0 when averaged over nitrogen rates.
- ♦ Petiole Nitrate:S ratio was optimum between 10-20 and Leaf N:S was optimum at 8 at TAREC
- ♦ Differences in N/S source and application method
- ♦ Interactions between N and S in petiole nitrate-N and lint yield.